-rom Heartbleed to Juniper and
Beyond

Matthew Green
Johns Hopkins University

My background

* Professor at Johns Hopkins University
» ~20 years Iin information security

* Ran an independent security evaluation firm,
worked with payment industry, movie studios

* My research:
* Applied cryptography

* Privacy-preserving protocols

Why this talk?

10 Things You Should Know
About Computer Security

5: Cryptography 1s a Solved Problem

Cryptography: The strongest link in the chain”

but not to others. Unfortunately, people concentrate too much on the
cryptography of a system — which is the equivalent of strengthening
the strongest link in a chain.

Why this talk?

}6 s You Should Know

e@ uter Security

5: CI‘M pNed Problem
3

cryptography of a system — which is the equivalent of
the strongest link in a chain.

“solved

problem”
Algorrithms

Protocol Designl

Implementationl Unsolved

Library AP design|

Deployment & Correct Usage

“solved

problem”
Algorithms
Protocol Desigrf{

Implementationl

ibrary AP design|

Deployment & Correct Usage

Unsolved

“'solved

Protocol Design

Implementationl

ibrary AP design|

R e
problem
Algorithms f{

Deployment & Correct Usage

Unsolved

Why does this matter?

L2 Down aad SuperFish 2emaval Tool

goto fail; // Apple SSL bug test site

This site will help you determine whether your computer is vulnerable to #qofc

Tracking the FREAK Attack

@ QUALYS SSL LABS

LOGJAM ATTACK (CVE-

2015- 4000)

The DROWN Attack

TLS Vulnerability

TOP SECRET STRAP1

Response to improving security

* For the past decade, NSA has lead an
aggressive, multi-pronged effort to break widely
used Internet encryption technologies

» Cryptanalytic capabilities are now coming on line

» Vast amounts of encrypted Internet data which
have up till now been discarded are now
exploitable

Major new processing systems, SIGDEV efforts
and tasking must be put in place to capitalize on
this opportunity

PTD “We penetrate targets’ defences.”

1 his talk

* Our community has made enormous progress
towards building secure cryptographic
systems...

1 his talk

* Our community has made enormous progress
towards building secure cryptographic
systems...

» At the level of algorithm and protocol design...

» At the level of implementation and deployment...

1 his talk

* Our community has made enormous progress
towards building secure cryptographic
systems...

» At the level of algorithm and protocol design...

» At the level of implementation and deployment...

Yet all of this progress is based on the
assumption that system designers are
oh our side.

1 his talk

* Our community has made enormous progress
towards building secure cryptographic
systems...

» At the level of algorithm and protocol design...

» At the level of implementation and deployment...

Yet all of this progress is based on the
assumption that system designers are
oh our side.

What if they aren’t?

Kleptograpnhy

(n.) The study of stealing cryptographic
secrets securely and subliminally.

(Young & Yung, 1996)

Kleptography:
Using Cryptography Against Cryptography

Adam Young* and Moti Yung™

Abstract. The notion of a Secretly Embedded Trapdoor with Univer-
sal Protection (SETUP) has been recently introduced. In this paper we
extend the study of stealing information securely and subliminally from
black-box cryptosystems. The SETUP mechanisms presented here, in
contrast with previous ones, leak secret key information without using
an explicit subliminal channel. This extends this area of threats, which
we call “kleptography”.

We introduce new definitions of SETUP attacks (strong, regular, and
weak SETUPs) and the notion of m out of n leakage bandwidth. We

The Dark Side of “Black-Box” Cryptography
or: Should We Trust Capstone?*

Adam Young** and Mot Yung** Yorktown Heights, NY 10598, USA,
Email: moti@watson.ibm.com

Abstract. The use of cryplographic devices as “hlack boves”, namely
trustirg their internal desguns, has been suggested and in fact Capstone
technalogy is offered as a next generation hardware protected escrow en-
cryption technology. Softwase cryptographic servers and prozrams are
heing, offered as well, for nse as library foactions, as eryptography gets
more and wore prevalent in compnting envimnments. The question we
zddress in this paper is how the asage of crvptography as a black bax
exposes users Lo various threats and attacks taat are undetectable in
z bacs-box environment. We present the SETUP (Secretly Embedded

Trapdoor with Universal Protection) mechanmsm, which can be embed-
N P T T T D P P S T+ LY e Y e

A bit of history (~1950s-1980s)

A bit of history (~1950s-1980s)

| EO 3.3(h)(2)
—POP-BRERET- PL 86-36/50 USC 3605

e. Hagelin Benior thanked me but said he did not need time to
think the matter over; he was prepared to make an answer then and there
to our proposal: le accepted it without any reservations or desire for
modifications. But he would like to have some more details; he wanted to
know, for example, | ,

1 told bim I was not suthorized nor able to give him more
information on this score at this time but I had no doubt that such details
wvould be forthcoming at thaptroper tm. -

Source: NY T/ProPublica

technologies.

TOP SECRET/SITK/NOFORN

(U) COMPUTER NETWORK OPERATIONS
(U) SIGINT ENABLING

(U) Project Description

(TS//SI//NF) The SIGINT Enabling Project actively engages the US and foreign IT industries to covertly
influence and/or overtly leverage their commercial products’ designs. These design changes make the systems
in question exploitable through SIGINT collection (e.g., Endpoint, MidPoint, etc.) with foreknowledge of the
modification. To the consumer and other adversaries, however, the systems' security remains intact. In this

| e e o : :
« (TS/SU/NF) Shapc the worldwide commercial cryptography marketplace to make it more tractable to
advanced cryptanalytic capabilities being developed by NSA/CSS. [CCP_00090]

e (TS/HSI/REL TO USA, FVEY) Insert vulnerabilitics into commercial encryption systems, IT systems,
networks, and endpoint communications devices used by targets.

» (TS/SIL/REL TO USA, FVEY) Collect target network data and metadata via cooperative network carriers
and/or increased control over core networks.

e (TS/HSI/REL TO USA, FYEY) Leverage commercial capabilities to remotely deliver or receive information
to and from target endpoints.

e (TS/SI/REL TO USA, FVEY) Exploit foreign trusted computing platforms and technologies.
« (TS/H/SI/REL TO USA, FVEY) Influence policies, standards and specification for commercial public key

TOP SECRET/SITK/NOFORN

(U) COMPUTER NETWORK OPERATIONS
(U) SIGINT ENABLING

Source: NY T/ProPublica

(U) Project Description

(TS//SI//NF) The SIGINT Enabling Project actively engages the US and foreign IT industries to covertly
influence and/or overtly leverage their commercial products’ designs. These design changes make the systems
in question exploitable through SIGINT collection (e.g., Endpoint, MidPoint, etc.) with foreknowledge of the
modification. To the consumer and other adversaries, however, the systems' security remains intact. In this

» (TS/SL/NF) Shape the worldwide commercial cryptography marketplace to make it more tractable to
advanced cryptanalytic capabilities being developed by NSA/CSS. [CCP_00090]

“ (TS//SI//REL TO USA FVEY) Insert vulnerabilities into commcrcnal cncryptnon systems T eystem ™
T=setwarks, and endpoint commumcauons dewoes used by targcts o

Insert vulnerabilitics into commcrcnal
encryption systems, I'T systems,

e (TS/HSI/REL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.

TOP SECRET/SITK/NOFORN

(U) COMPUTER NETWORK OPERATIONS
(U) SIGINT ENABLING

Source: NY T/ProPublica

(U) Project Description

(TS//SI//NF) The SIGINT Enabling Project actively engages the US and foreign IT industries to covertly
influence and/or overtly leverage their commercial products’ designs. These design changes make the systems
in question exploitable through SIGINT collection (e.g., Endpoint, MidPoint, etc.) with foreknowledge of the
modification. To the consumer and other adversaries, however, the systems' security remains intact. In this

« (TS/SU/NF) Shape the worldwide commercial cryptography marketplace to make it more tractable to
advanced cryptanalytic capabilities being developed by NSA/CSS. [CCP_00090]

e (TS/SI/REL TO USA, FVEY) Insert vulnerabilitics into commercial encryption systems, I'T systems,
networks, and endpoint communications devices used by targets.

a TCUCT/IMETI TNITICA EVEV Callant tarast natwnrl data and matadata via connerative nefwark ocarrmere

Influence policies, standards and specification for
commercial public key technologies.™

FVEY) Influence policies, standards and specification for commercrar pan

““_technologies.

TOP SECRET/SITK/NOFORN

(U) COMPUTER NETWORK OPERATIONS
(U) SIGINT ENABLING

Source: NY T/ProPublica

(U) Project Description

(TS//SI//NF) The SIGINT Enabling Project actively engages the US and foreign IT industries to covertly
influence and/or overtly lev«.rage thelr commcrcnal products dcsngns Thcse desngn changes make the systems
in question explojiable.shrengh-S1€ ¥ (2 C VITaPoit =with-fareknowledge of the
modificagoh. To the consumer and other adversaries, however thc systcms sccunty rcmams mtact' , this

« (TS//SL/NF) Shapc the worldwide COmMCrCTIT eIy ey PNy e Retplace 1o make it more tractable to
advanced cryptanalytic capabilities being developed by NSA/CSS. [CCP_00090]

To the consumer and other adversaries.
however, the systems' security rémains intact,

- 2 ﬁ
- | and/or increased control over core networks.

e (TS/HSI/RELTO USA, FVEY) Leverage commercial capabilities to remotely deliver or receive information
to and from target endpoints.

e (TSH#SI/REL TO USA, FVEY) Exploit foreign trusted computing platforms and technologies.

e (TS/HSI/REL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.

—low do you bulld a
Kleptographic system!?
* That is, a system many will use?
» Unlike Crypto AG, you can't mandate the hardware
* [he protocols are already extant (IPSec, SSL, etc.)
- Can't really mandate the software

* You can mandate cryptographic algorithms

* You can validate cryptographic implementations

Achilles heel: randomness

e Many protocols, one commonality:

* Most cryptographic protocols devour random bits

» Ex: 108 bytes / TLS session (ECDH

FCDSA, server)

* The quality of those bits Is hugely important

» Attacker who can predict (P)RNG output can break

(almost) any protocol

Achilles heel: randomness

« Moreover, a single generator may produce both
public and secret values

* In practice an RNG must remain secure when
the attacker can see some public output

* This Is something engineers take for granted, and rely on
w/0 conscious thought

=

[—
S

RNG System Architecture ()

Crypto
Protocols
(SSL, TLS,
IPSec, etc.)
Probabilistic:
system spedific,
hardware/entropy

collection

RNG System Architecture (2)

Crypto
Protocols
(SSL, TLS,
PRNG IPSec, etc.)
(DRBG)
Probabllistic: Deterministic:
system specific, ~ computational, fast,
hardware, entropy algorithmic

collection

RNG System Architecture (2)

-> Crypto
g Protocols

(SSL, TLS,
IPSec, etc.)

(DRBG)

Probabilisticc:©~ Deterministic:
system specific, ~ computational, fast,
hardware, entropy algorithmic
collection

Template for a DRBG

initial seea state state

output | output 2 output 3

Kleptographic proposal # |
Make G invertible

initial seed state | state state 3

Magical inversion

process only we
know

Kleptographic proposal #2:
A mapping from G to F

initial seea state | state 3

h £ MEe]

output | translation process only
we know

| 996:Young & Yung SETUPs

Schnorr.KG: (g) = G of prime order ¢
sk=x <72, PK =g"

Schnorr.Sign(l): £+ Z, output: (1; s)
c=H(PK|g"|m)
r = gk

s =xc+ k mod q

Young & Yung: SE TUPs

SETUP.KG: MK = g7, msk =y

Schnorr.KG: (g) = G of prime order ¢
sk=x <72, PK =g"

Schnorr.Sign(1): k< Z, output: (1; S)
c=H(PK|g"|m)
r = gk

s =xc+ k mod q

Young & Yung: SE TUPs

SETUP.KG: MK =gY, msk =y
Schnorr.KG: (g) = G of prime order ¢

sk=x <72, PK =g"

Schnorr.Sign(1): k < Z,
c = H(PK||g"|m)
r = gk
s =xc+ k mod q

Schnorr.Sign(2): % < H(MK") € Z,

output: (1, s)

Compute next

signature using

<7

Young & Yung: SE TUPs

SETUP.KG: MK =gY, msk =y
Schnorr.KG: (g) = G of prime order ¢

Given rand msk we can recover k' as:
k' = H(r™ms"®)
Schnor and thus obtain the long term secret key. t: (1. s)
T = H(PKgtm)TTTT
r=g"
s =xc+ k mod q

Schnorr.Sign(2): % < H(MK") € Z, signature UG

Compute next

<

initial See

If we know discrete
log of MK resp. g, can
translate

Dual EC DRBG

nitialseed pummm U omm T BEEE state 3

T you move this design into the EC setting & add r
some truncation, you get Dual EC DRBG.

Standardized by NIST in SP800-90A

(using prime-order elliptic curve subgroups).
Vulnerability publicized by Shumow and Ferguson '0/.

T — LY |I0g OT IMIKN resp. g, Cdi

translate

N.S.A. Able to Foil Basic Safeguards of Privacy on Web

By NICOLE PERLROTH, JEFF LARSON and SCOTT SHANE
Published: September 5, 2013 & 1466 Comments

Cryptographers have long suspected that the agency planted vulnerabilities in a
standard adopted in 2006 by the National Institute of Standards and Technology and
later by the International Organization for Standardization, which has 163 countries as

members.

Classt S.A memos appear to confirm that the fatal weakness, dlscover* ztwWo
" Mlcrosoft cryptographers in 2007, was engineered by the agency. The N.S.A. wrote th
standard and aggressively pushed it on the international group, privately calling the

effort “a challenge in finesse.”

Ry 7% qtually, N.S.A. became the sole editor,” the memo says.

Fast forward to 2015

Next several slides, joint work with:

Stephen Checkoway, Jacob Maskiewicz, Christina Garman, Joshua Fried, Shaanan
Cohney, Nadia Heninger, Ralt-Philipp VWeinmann, Eric Rescorla, Hovav Shacham

Juniper

NETWORKS

Juniper is committed to maintaining the integrity and security of our products and wanted to make
customers aware of critical patched releases we are issuing today to address vulnerabilities in devices
running ScreenOS® software.

i During a recent internal code review, Juniper discovered unauthorized code in ScreenOS that could allow '
: a knowledgeable attacker to gain administrative access to NetScreen® devices and to decrypt VPN
i connections. Once we identified these vulnerabilities, we launched an investigation lnto the matter and N

“WOrked 10 develop and 1ssue patched releases 10f the latest versions of Screents,

At this time, we have not received any reports of these vulnerabilities being exploited; however, we
strongly recommend that customers update their systems and apply the patched releases with the
highest priority.

CVE-2015-7756

VPN Decryption (CVE-2015-7756) may allow a knowledgeable attacker who can monitor VPN traffic to decrypt that traffic.
It is independent of the first issue.

This issue affects ScreenOS 6.2.0r15 throgh 6.2.0r18 and 6.3.0r12 through 6.3.0r20. No other Juniper products or
versions of ScreenOS are affected by thig issue.

There is no way to detect that this vulnerability was exploited.

This issue has been assigned CVE-2015-7756.

VPN Decryption (CVE-2015-7756) may
allow a knowledgeable attacker who can
mohnitor VPN traffic to decrypt that traffic.

—

Vulnerable -> Patched

ScreenOS 6.3.0r20
(vulnerable)

2551....9585320EEAF81044F20D5503
©AO35B11BECE81C785E6C933E4A8A131
F6578107....interrupt disabled a
2551....2c55e5e45edf713dc43475ef
fe8813a60326a64d9ba3d2e39¢cb639b0
f3b0adle....interrupt disabled a

ScreenOS 6.3.0r21
(patched)

Sources: Adam Caudill, Peter Bowen, HD Moore, Ralf Phillip VWeinmann

Dual EC DRBG

SAC635D8AA3AS3E7B3EBBD C3E27DZ6@4B

6B17D1F2E12C4247F8BCEGES63A440F277037D81ZDCD35A0F4F
FFFFFFFFOO000000FFFFFFFFFFFFFFFFBCEGFAADA7179E84F3B9CA .

bad: 9585320EEAF81044F20D55030A035B11BECE8B1C785E6C933E4A8A131F6578107

good:2c55e5e45edf713dc43475efFe8813a60326a64d9ba3d2e39¢cb639bo+3bBadlo

Nnist:c974451t45cdef9f0d3eB5el1e585Fc297235b82b5be8ff3efcab7¢59852018192

NIST SP 800-90A January 2012

NIST Special Publication 800-90A

Recommendation for Random Number
Generation Using Deterministic
Random Bit Generators

FIPS Approved Algorithms FIPS 140-2 SECURITY PoLICY

The following FIPS approved algorithms are supporte
* DSA, ECDSA Sign Verify

» SHA-1, SHA-256 SSG 5 and SSG 20

e Triple-DES (CBC)

Juniper Networks, Inc.

HW P/N SSG-5 and SSG-20, FW Version Screen0S 6.2.0

Document # 530-023728-01
Juniper Networks S5G 5 and SSG 20 Security Policy

———————————— juniper doesn’t

appear to use Dual
EC...

« AES (CBC)
e HMAC-SHA-1, HMAC-SHA-256

Dual EC In ScreenOS

The following product families do utilize Dual_EC_DRBG, but do not use the pre-defined points cited by NIST.:
1. ScreenQOS*

7 wl foTaTalB A N Vo T VoMl ale) 'Fo W NI Wal & o T-MMINEL- - _-_ TATUIRW S LaTaTs » B a7 ’7. L1 _; RSLAC-ROLAIES. Lk Aotz X,I_ — =T (W aTaTa s LT, V0
, random number generator. ScreenQS uses it in a way that should not be vulnerable to the possible issue that has been |
! brought to light. Instead of using the NIST recommended curve points it uses self-generated basis points and then takes

? the output as an input to FIPS/ANSI X.9.31 PRNG, which is the random number generator used in ScreenOS

“ScreenOS does make use of the
Dual_EC_DRBG standard, but is desighed
not to use Dual_EC_DRBG as its primary

random number generator. ScreenOS uses it
it in a way that shouldn't be vulnerable to
the possible issue that has been brought to
light.” (201 3)

e B

RNG Cascade

(32 bytes)

Seed
ey Dual EC DRBG g

This approach
should neutralize
any backdoor

ANGI X093 A

(3DES)

00 3 O B W N -

O

—— e
_—O

Ofei 2 O L & W N

20
21

22
23
24
25

void prng_reseed(void) {

}

blocks_generated_since_reseed = 0;

if (dualec_generate(prng_temporary, 32) != 32)
error_handler ("FIPS ERROR: PRNG failure, unable to reseed\n", 11);

memcpy (prng_seed, prng_temporary, 8);
prng_output_index = 8;

memcpy (prng_key, &prng_temporary[prng_output_index], 24);

prng_output_index = 32;

void prng_generate(void) {

int time[2];

time [0] = 0; Calls
time[1] = get_cycles();
prng_output_index = 0;
++blocks_generated_since_resesed;

_if (lone_stage. rng())

}

prng_reseed () ; &

// FIPS checks removed for clarity

x9_31_generate_block(time, prng_seed,

// FIPS checks removed for clarity

Dual EC to fill a buffer

———————

" for (; prng_output_index <= OxiF; prng_output_index += 8) {

prng_key, prng_block);

memcpy (&prng_temporary[prng_output_index], prng_block, 8);

}

Credit: William Pinckaers

00 3 O B W N -

O

—— e
_—O

Cie 9 v B W

{20
21
| 22

| 24

void prng_reseed(void) {

}

blocks_generated_since_reseed = 0;
if (dualec_generate(prng_temporary, 32) != 32)

error_handler ("FIPS ERROR: PRNG failure, unable to reseed\n", 11);
memcpy (prng_seed, prng_temporary, 8);
prng_output_index = 8;
memcpy (prng_key, &prng_temporary[prng_output_index], 24);
prng_output_index = 32;

void prng_generate(void) {

int time[2];

"Runs” ANSI generator in place

time [0] = 0;

time[1] = get_cycles();

prng_output_index = 0;

++blocks_generated_since_reseed;

if (lone_stage_rng())
prng_reseed () ;

" for (; prng_output_index <= OxiF; prng_output_index += 8) {

// FIPS checks removed for clarity
x9_31_generate_block(time, prng_seed, prng_key, prng_block);
// FIPS checks removed for clarity
memcpy (¥prng_temporary[prng_output_index], prng_block, 8);

}

00 3 O B W N -

O

—— e
—_—0

Bt e e e e e e e
O 00 9 O & LW N

20
21

22
23
24
25

/A
)

H

;

void prng_reseed(void) {

}

blocks_generated_since_reseed = 0;

if (dualec_generate(prng_temporary, 32) != 32) }
error_handler ("FIPS ERROR: PRNG failure, unable to reseed\n", 119;

memcpy (prng_seed, prng_temporary, 8); |

prng_output_index = 8;

memcpy (prng_key, &prng_temporary[prng_output_index], 24);

prng_output_index = 32;

int time[2];

Generates Dual EC output

time[0] = 0; Sets prng_output_index = 32
time[1] = get_cycles();
prng_output_index = 0;
++blocks_generated_since_reseed;
if (lone_stage_rng())
prong_reseed() ;
for (; prng_output_index <= O0x1F; prng_output_index += 8) {
// FIPS checks removed for clarity
x9_31_generate_block(time, prng_seed, prng_key, prng_block);
// FIPS checks removed for clarity
memcpy (¥prng_temporary[prng_output_index], prng_block, 8);
}

Credit: William Pinckaers

| void prng_reseed(void) {
2 blocks_generated_since_reseed = 0;
3 if (dualec_generate(prng_temporary, 32) != 32)
4 error_handler ("FIPS ERROR: PRNG failure, unable to reseed\n", 11);
5 memcpy (prng_seed, prng_temporary, 8);
6 prng_output_index = 8;
7 memcpy (prng_key, &prng_temporary[prng_output_index], 24);
8 prng_output_index = 32;
9 }
10 void prng_generate(void) {
S ANSI generator is never run.
13 time[0] = 0; Dual EC output emitted.
14 time[1] = get_cycles();
15 prng_output_index = 0;
16 ++blocks_generated_since_reseed;
17 if (lone_stage_rng())
18 prng_reseed();
1’19 for (; prng_output_index <= OxiF; prng_output_index += 8) { |
L 20 // FIPS checks removed for clarity
21 x9_31_generate_block(time, prng_seed, prng_key, prng_block);
} 22 // FIPS checks removed for clarity
23 memcpy (¥prng_temporary[prng_output_index], prng_block, 8);
| 24 }

Revised Cascade

(32 bytes) . Y
Output

N, #
e Dual EC DRBG 4 - 73 :
(TDLS)

Seed

Explorting IKE (ldeal)
» Like many protocols, outputs nonces

* In ScreenOS 6.1 (pre-Dual EC): 20 bytes
In ScreenOS 6.2 (with Dual EC): 32 bytes
(>= 28 bytes is sufficient to recover Dual EC state)

Generate IKE nonce

Generate DH secret key

recompute DH secret key

oulld

Explorting IKE (ldeal)

| This is (apparently) not what Juniper

does

Generate DH secret key

—g\

recompute DH secret key

Exploiting IKE (ScreenOsS 6. 1)

* All versions of ScreenOS appear to generate key first
Nonce second

« Even with Dual EC, hinders the attack

Generate DH secret key

Generate IKE nonce
(must wait for next handshake)

Exploiting IKE (ScreenOS 6.2)

» ScreenQS 6.2 (the version that adds Dual EC)

» Adds a nonce pre-generation queue

» Effectively ensures that nonces are always generated first

Generate IKE nonce

Generate DH secret key

recompute DH secret key

NIS T/ANSI
standards begin

Young and Yung
propose SETUPs

996 2004
e T

1998 (7)

Dual EC DRBG
developed at NSA D007

Final NIST standard

NIST/ANSI Juniper ScreenOS
Young and Yung standards begin adds Dual EC
propose SETUPs —|§1c|<
Discovery
996 2004 2008
2015
- L N EEEEEES——————————————— L~
?
778 0) 2012
Dual EC DRBG
developed at NSA 7007 ScreenOS
code hack

Final NIST standard

NIST/ANSI Juniper ScreenOS
Young and Yung standards begin adds Dual EC
propose SETUPs —|§1c|<
Discovery
1996 2004 2008
2015
T |
I
778 0) 2012
Dual EC DRBG
developed at NSA 7007 ScreenOS
code hack

Final NIST standard

Question:

Let’'s assume the

Dual EC

DRBG flaws were

deliberate, not an accident.

Let's assume that there Is exists policy to
promote vulnerabilities iIn VPN devices.

How would you implement kleptographic
systems before SETUPS!

ANSI X9.3 |

| k—>{ AES-128D
k—»| AES-128D

R,

ANSI X9.3 |

R,

R — ———————————

Attacking ANS| X9.3

* Most common DRBG (PRG) in FIPS devices
* Well-known vulnerability: Kelsey, Schneler, Wagner and Hall

- Attacker who knows the key k (but not the seed S)
can recover Internal generator state from |6-32 out bytes

* Key Is never updated

» Standard says nothing about this

» 1o an attacker without knowledge of Kk, output is
indistinguishable from random

Security Target for the Fortinet FortiGate™-200B
and 620B Unified Threat Management Solution
and FortiOS 4.0 CC Compliant Firmware: EAL4+

The storage area for private cryptographic keys, plaintext
cryptographic keys and all other critical cryptographic security
parameters 1s a flash RAM device. Zeroization of these storage areas
occurs when the Security Administrator executes a factory reset or

enables FIPS-CC mode. At these times, all non-hard-coded keys and
critical security parameters are zeroized by lifting the voltage from the

bits comprising the key, which has the same effect as overwriting the

[storage area with zeroes. The hard-coded keys are ANSI X931 RNG

configuration backup key.

AES Key, Firmware update key, configuration integrity key,

- —— ———— ————— " —— y

Prepared hy:

Electronic Warfare Associates-Canada, Ltd.

55 Metcalfe St.. Suite 1600
Ottawa, Ontario

KIP 6L5

Explorting FortiOS
* Reverse-engineered FortiOS implementation

» With Shaanan Cohney and Nadia Heninger

» Not a trivial attack to implement: requires guessing a
microsecond-level timestamp value updated at each block

* By adjusting granularity of this timer, can make the attack
cost 2740 or 2750 AES operations (and up)

» Many optimizations. Full recovery of Diffie-Hellman private
keys from a protocol transcript in about |5 seconds

SumMmMINg up

e Catastrophic RNG vulnerabilities
in 2 major VPN device manufacturers during the
same time period

* Hanlon's razor: ' 'Never attribute to malice that which Is
adequately explained by stupidity”

* Heinlein's Razor: "Never attribute to malice that which can
be adequately explained by stupidity, but don't rule out
malice.”

So how do we fix this!

VWe can't do everything

 Basic problem: if adversary has unlimited control
over device implementation, we lose

» E.g., perfectly correct implementation +
extiltrate 256 bit PRG state through some timing channel

» But In the main, the adversary Is constrained by two factors:

|. Complexity of the modifications (code does get reviewed!)
2. Effect on the protocol transcript (can be monitored)

his explains why corrupted RNG designs are so popular

. Bulld more resilient protocols
e Example: PSK in IKEvVI

» PSK Is fed Into the KDF

» [t PSK is high entropy, devices not exploitable!

. Bulld more resilient protocols
e Example: PSK in IKEvVI

» PSK Is fed Into the KDF

» [f PSK s high entropy, devices not exploitable

« Example: PSK in IKEv2

« PSK Is not fed into the KDF

» Devices may be exploitablel

2. Replace FIPS validation

e FIPS validation does not work

» Fach of the devices |'ve discussed went through high-level
FIPS (CMVP) validation, some at high EAL levels!

» All the preceding vulnerabilities should have been caught
» FIPS validation == alg tests + compliance

* Worse, the FortiOS hard-coded key was a testing key

* Why Is there a testing key In the device!

* Because FIPS mandates runtime tests!

2a.Whole-protocol evaluation

* Validate devices by speaking their language

» Rather than testing individual algorithms, run
Ive tests with the device

» Protocol should complete correctly with a testing endpoint
» Now:

* |. Have device prove the correctness of its protocols
using efficient 2PC (many challenges!)

» 2. Fuzz firmware to identify hard-coded parameters

2b. Full formal verification
 Formally verify the entire DRBG stack

* Joint work with Andrew Appel, Katherine Ye, Lennart Beringer:
developed a formal proof of security in Coq/FCFE

» Step I: Machine-prove that the NIST
HMAC-DRBGs are actually PRGs

e Step 2: Machine-prove that mbed-TLS (C)
stack iImplements the specification
(Including HMAC and SHA — already done)

* Step 3: Link the proofs together

1 his should drive our research

e Mostly it doesn’t. But some notable exceptions:
» Algorithm Substitution Attacks (Bellare, Paterson, Rogaway)
» Kleptography (Young, Yung)
» Formal Treatments of RNGs (Dodis et al.)

» Formal Verification Approaches (INRIA, MSR, Princeton)

 IWANT TO -

BELIEVE

