
From Heartbleed to Juniper and
Beyond

Matthew Green  
Johns Hopkins University

My background
• Professor at Johns Hopkins University

• ~20 years in information security

• Ran an independent security evaluation firm, 
worked with payment industry, movie studios

• My research:

• Applied cryptography

• Privacy-preserving protocols

Why this talk?

These people are wrong

Why this talk?

Algorithms

Protocol Design

Implementation

Library API design

Deployment & Correct Usage

Unsolved

“solved
problem”

Algorithms

Protocol Design

Implementation

Library API design

Deployment & Correct Usage

“solved
problem”

Unsolved

Algorithms

Protocol Design

Implementation

Library API design

Deployment & Correct Usage

“solved
problem”

Unsolved

Why does this matter?

• Our community has made enormous progress
towards building secure cryptographic
systems…

This talk

• Our community has made enormous progress
towards building secure cryptographic
systems…

• At the level of algorithm and protocol design…

• At the level of implementation and deployment…

This talk

• Our community has made enormous progress
towards building secure cryptographic
systems…

• At the level of algorithm and protocol design…

• At the level of implementation and deployment…

Yet all of this progress is based on the
assumption that system designers are  
on our side.

This talk

• Our community has made enormous progress
towards building secure cryptographic
systems…

• At the level of algorithm and protocol design…

• At the level of implementation and deployment…

Yet all of this progress is based on the
assumption that system designers are  
on our side.

 What if they aren’t?

This talk

Kleptography
(n.) The study of stealing cryptographic

secrets securely and subliminally.

(Young & Yung, 1996)

A bit of history (~1950s-1980s)

A bit of history (~1950s-1980s)

Source: NYT/ProPublica

Source: NYT/ProPublica

Source: NYT/ProPublica

Source: NYT/ProPublica

How do you build a
Kleptographic system?

• That is, a system many will use?

• Unlike Crypto AG, you can’t mandate the hardware

• The protocols are already extant (IPSec, SSL, etc.)

• Can’t really mandate the software

• You can mandate cryptographic algorithms

• You can validate cryptographic implementations

Achilles heel: randomness
• Many protocols, one commonality:

• Most cryptographic protocols devour random bits

• Ex: 108 bytes / TLS session (ECDH+ECDSA, server)

• The quality of those bits is hugely important

• Attacker who can predict (P)RNG output can break 
(almost) any protocol

Achilles heel: randomness
• Moreover, a single generator may produce both  

public and secret values

• In practice an RNG must remain secure when  
the attacker can see some public output

• This is something engineers take for granted, and rely on  
w/o conscious thought

r1 r2

session id

r6 r7

ecdhe sk

r4

server random

RNG System Architecture (1)

TRNG

bits Crypto
Protocols

(SSL, TLS,
IPSec, etc.)

Probabilistic:
system specific,  

hardware/entropy  
collection

RNG System Architecture (2)

TRNG

Probabilistic:
system specific,  

hardware, entropy  
collection

PRNG 
(DRBG)

seed

Deterministic:
computational, fast,

algorithmic

bits
Crypto

Protocols

(SSL, TLS,
IPSec, etc.)

RNG System Architecture (2)

TRNG

Probabilistic:
system specific,  

hardware, entropy  
collection

PRNG 
(DRBG)

seed

Deterministic:
computational, fast,

algorithmic

bits
Crypto

Protocols

(SSL, TLS,
IPSec, etc.)

Template for a DRBG

F F F
initial seed

G

state 1 state 2

G

state 3

G

output 1 output 2 output 3

Kleptographic proposal #1:  
Make G invertible

F F F
initial seed

G

state 1 state 2

G

state 3

G

output 1 output 2 output 3Magical inversion
process only we

know

Kleptographic proposal #2:  
A mapping from G to F

F F F
initial seed

G

state 1 state 2

G

state 3

G

output 1 output 2 output 3
Magical

translation process only
we know

1996: Young & Yung SETUPs

hgi = G

c = H(PKkgkkm)

r = gk

s = xc+ k

of prime order q

PK = gx

Schnorr.KG:

Schnorr.Sign(1): k Zq

sk = x Zq ,

output: (r, s)

mod q

Young & Yung: SETUPs

hgi = G

c = H(PKkgkkm)

r = gk

s = xc+ k

of prime order q

PK = gx

Schnorr.KG:

Schnorr.Sign(1): k Zq

sk = x Zq ,

output: (r, s)

mod q

MK = gy,msk = ySETUP.KG:

Young & Yung: SETUPs

hgi = G

c = H(PKkgkkm)

r = gk

s = xc+ k

of prime order q

PK = gx

Schnorr.KG:

Schnorr.Sign(1): k Zq

sk = x Zq ,

output: (r, s)

mod q

MK = gy,msk = ySETUP.KG:

Schnorr.Sign(2): Compute next
signature using k’k0 H(MKk) 2 Zq

Young & Yung: SETUPs

hgi = G

c = H(PKkgkkm)

r = gk

s = xc+ k

of prime order q

PK = gx

Schnorr.KG:

Schnorr.Sign(1): k Zq

sk = x Zq ,

output: (r, s)

mod q

MK = gy,msk = ySETUP.KG:

Schnorr.Sign(2): Compute next
signature using k’k0 H(MKk) 2 Zq

Given and we can recover as:

and thus obtain the long term secret key.

r msk k0

k0 = H(rmsk)

SETUP

F F F
initial seed

G G

state 3

G

output 2 output 3If we know discrete
log of MK resp. g, can

translate
gx

MKx

x

xQ

Dual EC DRBG

F F F
initial seed

G G

state 3

G

output 2 output 3If we know discrete
log of MK resp. g, can

translate

If you move this design into the EC setting & add 
some truncation, you get Dual EC DRBG.

Standardized by NIST in SP800-90A
 

(using prime-order elliptic curve subgroups). 
Vulnerability publicized by Shumow and Ferguson ’07.

x

xP

Fast forward to 2015

Next several slides, joint work with: 
 

Stephen Checkoway, Jacob Maskiewicz, Christina Garman, Joshua Fried, Shaanan
Cohney, Nadia Heninger, Ralf-Philipp Weinmann, Eric Rescorla, Hovav Shacham

CVE-2015-7756

VPN Decryption (CVE-2015-7756) may
allow a knowledgeable attacker who can

monitor VPN traffic to decrypt that traffic.

Vulnerable -> Patched
ScreenOS 6.3.0r20

(vulnerable)

ScreenOS 6.3.0r21
(patched)

Sources: Adam Caudill, Peter Bowen, HD Moore, Ralf Phillip Weinmann

Dual EC DRBG

Juniper doesn’t
appear to use Dual

EC…

Dual EC in ScreenOS

“ScreenOS does make use of the
Dual_EC_DRBG standard, but is designed
not to use Dual_EC_DRBG as its primary

random number generator. ScreenOS uses it
it in a way that shouldn't be vulnerable to
the possible issue that has been brought to

light.” (2013)

RNG Cascade

Dual EC DRBG
Seed K, V ANSI X9.31

(3DES)

Output

This approach
should neutralize

any backdoor

(32 bytes)

Calls Dual EC to fill a buffer

Calls ANSI X9.31 to process the result in place

prng_generate_block()

Calls Dual EC to fill a buffer

Credit: William Pinckaers

Calls Dual EC to fill a buffer

Calls ANSI X9.31 to process the result in place

prng_generate_block()

“Runs” ANSI generator in place

Credit: William Pinckaers

Calls Dual EC to fill a buffer

Calls ANSI X9.31 to process the result in place

prng_generate_block()

Generates Dual EC output
Sets prng_output_index = 32

Credit: William Pinckaers

Calls Dual EC to fill a buffer

Calls ANSI X9.31 to process the result in place

prng_generate_block()

ANSI generator is never run.
Dual EC output emitted.

Credit: William Pinckaers

Revised Cascade

Dual EC DRBG
Seed K, V ANSI X9.31

(3DES)

Output
(32 bytes)

Exploiting IKE (Ideal)
• Like many protocols, outputs nonces

• In ScreenOS 6.1 (pre-Dual EC): 20 bytes  
In ScreenOS 6.2 (with Dual EC): 32 bytes  
(>= 28 bytes is sufficient to recover Dual EC state)

Generate IKE nonce

Generate DH secret key

recompute DH secret key

Exploiting IKE (Ideal)
• Like many protocols, outputs nonces

• In ScreenOS 6.1 (pre-Dual EC): 20 bytes  
In ScreenOS 6.2 (with Dual EC): 32 bytes  
(>= 28 bytes is sufficient to recover Dual EC state)

Generate IKE nonce

Generate DH secret key

recompute DH secret key

This is (apparently) not what Juniper
does

Exploiting IKE (ScreenOS 6.1)
• All versions of ScreenOS appear to generate key first  

Nonce second

• Even with Dual EC, hinders the attack

Generate IKE nonceGenerate DH secret key

(must wait for next handshake)

Generate IKE nonceGenerate IKE nonce

Exploiting IKE (ScreenOS 6.2)
• ScreenOS 6.2 (the version that adds Dual EC)

• Adds a nonce pre-generation queue

• Effectively ensures that nonces are always generated first

recompute DH secret key

Generate IKE nonce

Generate DH secret key

Young and Yung 
propose SETUPs

Dual EC DRBG  
developed at NSA

1996

1998 (?)

NIST/ANSI
standards begin

2004

Final NIST standard

2007

Young and Yung 
propose SETUPs

Dual EC DRBG  
developed at NSA

1996

1998 (?)

NIST/ANSI
standards begin

2004 2008

Juniper ScreenOS  
adds Dual EC

ScreenOS  
code hack

2012

Hack 
Discovery
 
2015

Final NIST standard

2007

Young and Yung 
propose SETUPs

Dual EC DRBG  
developed at NSA

1996

1998 (?)

NIST/ANSI
standards begin

2004 2008

Juniper ScreenOS  
adds Dual EC

ScreenOS  
code hack

2012

Hack 
Discovery
 
2015

Final NIST standard

2007

Question:

Let’s assume the Dual EC DRBG flaws were
deliberate, not an accident.

Let’s assume that there is exists policy to
promote vulnerabilities in VPN devices.

How would you implement kleptographic
systems before SETUPs?

ANSI X9.31
G F

ANSI X9.31
G F

Attacking ANSI X9.31
• Most common DRBG (PRG) in FIPS devices

• Well-known vulnerability: Kelsey, Schneier, Wagner and Hall

• Attacker who knows the key k (but not the seed S)  
can recover internal generator state from 16-32 out bytes

• Key is never updated

• Standard says nothing about this

• To an attacker without knowledge of k, output is
indistinguishable from random

Exploiting FortiOS
• Reverse-engineered FortiOS implementation

• With Shaanan Cohney and Nadia Heninger

• Not a trivial attack to implement: requires guessing a
microsecond-level timestamp value updated at each block

• By adjusting granularity of this timer, can make the attack
cost 2^40 or 2^50 AES operations (and up)

• Many optimizations. Full recovery of Diffie-Hellman private
keys from a protocol transcript in about 15 seconds

Summing up
• Catastrophic RNG vulnerabilities 

in 2 major VPN device manufacturers during the
same time period

• Hanlon’s razor: “Never attribute to malice that which is
adequately explained by stupidity”

• Heinlein's Razor: "Never attribute to malice that which can
be adequately explained by stupidity, but don't rule out
malice."

So how do we fix this?

We can’t do everything
• Basic problem: if adversary has unlimited control  

over device implementation, we lose

• E.g., perfectly correct implementation +  
 exfiltrate 256 bit PRG state through some timing channel

• But in the main, the adversary is constrained by two factors: 
 
1. Complexity of the modifications (code does get reviewed!) 
2. Effect on the protocol transcript (can be monitored)

• This explains why corrupted RNG designs are so popular

1. Build more resilient protocols
• Example: PSK in IKEv1

• PSK is fed into the KDF

• If PSK is high entropy, devices not exploitable!

1. Build more resilient protocols
• Example: PSK in IKEv1

• PSK is fed into the KDF

• If PSK is high entropy, devices not exploitable

• Example: PSK in IKEv2

• PSK is not fed into the KDF

• Devices may be exploitable!

2. Replace FIPS validation
• FIPS validation does not work

• Each of the devices I’ve discussed went through high-level  
FIPS (CMVP) validation, some at high EAL levels!

• All the preceding vulnerabilities should have been caught

• FIPS validation == alg tests + compliance

• Worse, the FortiOS hard-coded key was a testing key

• Why is there a testing key in the device?

• Because FIPS mandates runtime tests!

2a. Whole-protocol evaluation
• Validate devices by speaking their language

• Rather than testing individual algorithms, run  
live tests with the device

• Protocol should complete correctly with a testing endpoint

• Now:

• 1. Have device prove the correctness of its protocols 
 using efficient 2PC (many challenges!)

• 2. Fuzz firmware to identify hard-coded parameters

2b. Full formal verification
• Formally verify the entire DRBG stack

• Joint work with Andrew Appel, Katherine Ye, Lennart Beringer :
developed a formal proof of security in Coq/FCF

• Step 1: Machine-prove that the NIST  
 HMAC-DRBGs are actually PRGs

• Step 2: Machine-prove that mbed-TLS (C) 
 stack implements the specification  
 (including HMAC and SHA — already done)

• Step 3: Link the proofs together

This should drive our research
• Mostly it doesn’t. But some notable exceptions:

• Algorithm Substitution Attacks (Bellare, Paterson, Rogaway)

• Kleptography (Young, Yung)

• Formal Treatments of RNGs (Dodis et al.)

• Formal Verification Approaches (INRIA, MSR, Princeton)

