

FIPS Certification and the Bouncy
Castle Project, or What Do You

Mean I Can’t Just Do a New
Release Tomorrow?

A Quick Look at Bouncy Castle

● Collection of APIs in Java and C#
● Provides basic cryptography and implementations

for a range of ISO, ITU-T, and IETF standards
such as X.509, OpenPGP, S/MIME, and TLS.

● Core Java API 324,000 lines (565,000 including
tests and compatibility APIs).

● Core C# API 165,000 lines (237,000 including
tests)

History of Bouncy Castle

● Core feature set determined by essential and
interesting algorithms at the time

● Algorithm set evolved according to the needs of the
APIs built on the core crypto library

● APIs evolved according to core developer needs and
user feedback

● Started in 2000
● Originally just Java, C#

added in 2004
● 3 core developers and a

bit of extra help

History of Bouncy Castle (Cont.)

● Original Java API was 27,000 lines
● By around 2007 the effect of adding around 300,000

lines of code in an ad-hoc fashion was starting to be
felt

● Started grappling with the issue of whether to simply
run from the project, or find some way of funding it

● Decided not to run, but needed some way of moving
the dialogue with our users to the fact the work
needed to be paid for

Interest in FIPS 140-2

● We started getting requests for FIPS compliance as
soon as the APIs became commonly accepted

● FIPS 140-2 also provides the basis for many other
standards

● And, put bluntly, everyone understands FIPS 140-2
has to be paid for, so it provided a way of starting to
move to the funding dialogue

● Provided a focus point for raising the quality of the
APIs as well

Launching the FIPS effort

● Other expenses: lab fees, NIST recovery fees, and the
actual cost of doing it

● Preparation for product review showed there were a
number of problems with the way BC did things, mainly in
the low level, or “light weight” APIs

● Low-level BC was designed for maximum flexibility
● FIPS 140-2 is, in some ways, more protective

● Had enough money to do an initial
product and documentation
review, so started there

Hindsight

● As it turned out, raising the money, while it took time, was
not a huge problem

● Even revamping the low-level API was not a massive effort
● Issues around algorithm testing are easy to deal with as

well
● Operational testing, while still more “hands on” than we

would like, was not a problem item either
● The update process, on the other hand was, and still is, a

killer

Updates – Non-FIPS

● BC developer either gets inspired, receives a code
contribution, or flies into a panic about something

● Makes changes, writes tests, does a full build to do
regression testing

● Automated build (Jenkins) takes over and runs
some more builds doing further testing

● Beta release gets shipped for Java 1.5 and later
● Eventually an actual release gets done

Updates – Non-FIPS (Cont.)

● Record for receipt of report to working tested
beta with fix is around 2 hours

● Record for roll out of a full release across all the
JVMs supported is around 16 hours

● Further work on automation could reduce the
roll out time of a full release

● Overall user satisfaction quite high

Updates - FIPS

● Two categories – before submission, after
submission

● Submission represents CAVP and operational
testing

● Record for before submission turnaround is about
the same as for Non-FIPS

● Once CAVP testing and operational testing are
done it suddenly gets a lot harder. Worst case is
that a modification results in a full resubmission.

Culture Issues – Development
● Independent Open Source

projects are resource
constrained.

● A project's survival depends
on successfully doing “as
needed” development

● “as needed” means that you do not do things
fully up front, opting instead for an evolutionary
approach so features are added as required

● “as needed” is also one of the principles of agile
development.

Culture Issues - Testing

● “as needed” also affects testing
● Observer bias – difficult to look in depth at things

that you either do not think of or do not care
about

● Observer bias is an issue for the library
developers

● Correct behaviour which has arisen implicitly
from otherwise tested code often not captured in
explicit tests

● Identifying bias requires testing tests

Culture Issues – Testing (Cont.)

● Likewise, user acceptance testing also suffers from
observation bias.

● Users generally only care about what works for them.
● Reporting of issues varies according to state of project
● The reality is everyone feels they are short of time
● End result is things get missed because they are “not

important”
● Traditionally testing not well budgeted for even in

closed source efforts

FIPS Process

● FIPS certification is managed as a “big up front” process
● From a FIPS perspective CAVP and operational testing

guarantee algorithms are correct and health tests are in
place

● From a user perspective CAVP and operational testing
do not show that the scaffolding that goes around the
algorithms is correct

● Unfortunately both the algorithms and the scaffolding end
up inside the implementation boundary of a software
module

Why this Matters

● For API users, algorithm correctness is also
important, but so is the correctness of the
scaffolding

● In the case of the JCA/JCE scaffolding
correctness is in two forms: compliance to that
which is documented, and compliance to that
which is implemented already (so implied)

● In some cases 3rd party vendors assume things
about scaffolding which can make an API
unusable in an application if the API does not
conform

Changes in Approach - BC

● Needing to write and maintain more tests to
cover broad scaffolding issues and test for
conformance

● Had to get over misplaced faith in code
coverage

● Code coverage becomes less useful as a guide
to code health: both branches and combination
of branches need to be captured, and also
return types (e.g. keys implementing particular
interfaces)

Changes in Approach – BC (Cont.)

● Review work needed to take “big up front” into
consideration

● Originally questions were largely around a
particular algorithm and broader integration
followed

● Now questions need to be raised early about
broader integration as well

● Tried to explicitly allow time and budget for
broader testing

End Result

● Luckily we had a bit of prior experience, however the user
community of the general APIs and even to a degree the
FIPS user community followed the “it works for me” principal

● Biggest problem was testing unwritten “standards” in the
JCE/JCA properly

● 28 issues were identified with 1.0.0 in the first 12 months – 2
of these touched on code in the CAVP tested
implementation classes

● 12 issues could not be worked around – only 1 of these
touched on code in the CAVP tested implementation classes

Things to Think About

● First, automated testing would help. See:

https://github.com/usnistgov/ACVP
https://github.com/usnistgov/AMVP

● As far as software modules go, the boundary idea
appears to be based around assembler and a
single loadable library

● For higher level languages like C# and Java it
should be possible to safely reduce the boundary
to avoid a full change process further

Things to Think About (Cont.)

● The actual safety with which a change can be
made depends on a number of things in, and
about, a software module

● Some consideration of the nature of the build
process used to develop the software module
should be made as well

Who Makes the Call?

Labs are already responsible for code review of
non-CAVP tested code.

It might make sense for them to be able to
make a call on boundary with modern
languages and development processes.

Another Reason to Worry

So Finally...

● We are starting to enter a period where change
is likely to become the new normal

● It may not be right to assume we can go
through a 12-24 month process to get
something out the door!

Thanks for listening.

Questions?

