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I Overview

= Combination of survey and original research
— Natural places to be concerned about leakage
— High-level notes about natural countermeasures

— Goal is to provide implementers with information about what they need to
research before implementation

= Won't go into “"Why quantum-safe crypto”?

= \What flavors of quantum safe crypto?

— Code-based, lattice-based, MVQ, SIDH, Hash based signatures
— WEe'll focus on lattice-based



I LWE (Regev 2005; Ding 2012; Bos, Costello, Ducas,
Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila 2016)
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* Alice ->Bob: E, =A,"H + B,

* Bob -> Alice: Eg =H * Az + By

« Alice: A, *Eg =A*H*Ag +A, *
BB

*Bob: E, *Ag =A,*H*Ag +B, *
Ag

* Public value size : N? log,q
« Naive Multiplications: N2

* N for 128-bit post-quantum
security:500-1000 : « « o
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0 R-LWE (Lyubashevsky, Peikert, Regev 2012; Peikert 2014;

Alkim, Ducas, Poppelmann, Schwabe 2016)
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. Alice -> Bob: E, =A,*H + B,

- Bob -> Alice: Eg = H * Ag + By

« Alice: Ay *Eg = As*H*Ag +A, *
BB

« Bob: E, *A; = A *H*Ag + B, *
AB

» Keysize : N log,q
 Naive Multiplications: N2

* N for 128-bit post-quantum
security: 500-1000




BOB

NTRU

Hoffstein, Pipher, Silverman 1998)
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IN'TRU

* Alice->Bob:hst.f*h=g
« Bob ->Alice:e=h*pr+m
* Alice: f* e =p*r'g + fm
. =f"m mod p
* Keysize : N log,q
« Naive Multiplications: N2

* Index-based: N*d adds

* N for 128-bit post-quantum
security: 400-1000




0 Signatures: transcript security

In some “old” lattice-based signature
schemes, each transcript of a signature-
document pair reveals some information
about the secret key;

Collecting enough of those transcripts
allows the attacker to learn a good basis of
the lattice.

Modern lattice-based signature schemes,
following Lyubashevsky’s |nS|gf_ht, _
selectively reject otherwise valid signatures
on signing to ensure the signature points
are drawn from a known distribution.

Use randomness to select a starting point
for signing

Reject with some probability based on the
properties of the candidate siganture
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Blue dots: transcripts
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Enough blue dots gives a good approximation of the fundamental
parallelepiped



K BLISS (simplified) (Lyubashevsky 2009)

= Rejection sampling " Private key s, s,
— Ensure that “transcript” of " Public key a;, a,, h=a;s; + a,s,
signatures doesn'’t leak = Sign:
information '
— Selecty,, y,
= BLISS: ~ Calculate f = H(a,y, + ayy,, m)
— Bimodal Gaussian sampling — (24, 2) = (fsqtyy, fs,ty,)
= Siqnifi | iecti — Restart if (z, not consistent
Sﬁgggﬁig{ y reduces rejection with specifi ied dlgtrlbutlon
- Send (f, z,, z,)

— ... plus other optimizations

_ _ " Verify:
" Note that revealing yi reveals _ Check that z,, z, are small and



K pgNTRUSIgn (Hoffstein et al 2014)

Private key f, g
Public key h =g * f1

" Rejection sampling

— Ensure that “transcript” of signatures
doesn’t leak information

= Sign:
= Sampling: — Calculate Hash (m) -> (s, t,)

— Uniform starting point W#hin set of — Select lattice point (s, t;)
lattice points with all coefficients a in _ Use (f 9) to find nearby (s, t) such that (s, t) =
range (—q/2, q/2] (Sp, t,) mod p

— Reject any signatures whose — Restart if (s, t) not consistent with specified
coefficients lie outside range (—(g-B)/2, distribution
(9-B)/2] — Send (s)

— Ongoing research into other starting = Verify:

distributions
— Calculate t =s*h mod q

= Revealing(s,, t,) doesn’t directly — Calculate Hash (m) -> (s, t,)
reveal (f, g) ?Ju? does allow a ~ Check that z,, 2, are small and
reasonably efficient transcript attack f=H(az, + &2, ~ hf. m)



i Natural sources of side channel leakage

= Multiplication

Coefficient-based
Index-based

In all algorithms, there is a multiplication that depends
on private information

= ==>timing variation could leak private information

= Sampling

Uniform
Fixed-weight
Gaussian

In some cases, sampling depends on private
information

= ==>timing variation could leak private information in these
cases

= Rejection

= Fault attacks

Histogram for Key 01 (Data 5) and Key 06 (Data 8)
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K Sampling

= Uniform binary

= Uniform mod p (prime) or mod g
(composite)
" Fixed-weight
— Some parameterized number of 1s / -1s

= Gaussian
— Draw from a Gaussian distribution

— Can be implemented using floating-
point arithmetic or lookup tables

» Floating-point: issues with accuracy
= Lookup: issues with size
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K Examples

" RSA Signing Fault Attack = Cause fault at time of signing
®" Timing attack on NTRUEnNcrypt :
via Variation in Number of Hash ) lL(JeSye CRT to recover private
Calls

" Flush, Gauss, and Reload — A
Cache Attack on the BLISS

Lattice-Based Signature Scheme

" | oop-Abort Faults on Lattice-
Based Fiat—-Shamir and Hash-
and-Sign Signatures

® Generalized Howgrave-Graham—
Szydlo and Side-Channel Attacks
Against BLISS



K Examples

= RSA Signing Fault Attack

" Timing attack on NTRUENcrypt
via Variation in Number of Hash
Calls

" Flush, Gauss, and Reload — A
Cache Attack on the BLISS

Lattice-Based Signature Scheme

" | oop-Abort Faults on Lattice-
Based Fiat—-Shamir and Hash-
and-Sign Signatures

® Generalized Howgrave-Graham—
Szydlo and Side-Channel Attacks
Against BLISS

= CCA2 scheme for NTRUENcrypt
— Generates r from (plaintext + salt)

= Attack uses timing information
leaked by method to get fixed-
weight r

= Create ciphertexts that will
decgypt to extremely sparse
candidate plaintexts and
recalculate time to obtain r for
he plaintexts

= Match times to determine which
candidate plaintexts were
obtained

" Recover private key!




K Examples

= RSA Signing Fault Attack

®" Timing attack on NTRUEnNcrypt
via Variation in Number of Hash
Calls

= Flush, Gauss, and Reload — A
Cache Attack on the BLISS
Lattice-Based Signature Scheme

" | oop-Abort Faults on Lattice-
Based Fiat—-Shamir and Hash-
and-Sign Signatures

® Generalized Howgrave-Graham—
Szydlo and Side-Channel Attacks
Against BLISS

= Bruinderink, Hulsing, Lange,
Yarom 2016

" Applies when Gaussian sampling
Is iImplemented by table look-up

— Large tables are known to be
vulnerable to cache misses — see
similar attacks on AES

= Recovers private key with 90%
success

= “These attacks require significant
power over device... more
research is needed to get security
for implementations.”




K Examples

= RSA Signing Fault Attack

®" Timing attack on NTRUEnNcrypt
via Variation in Number of Hash
Calls

" Flush, Gauss, and Reload — A
Cache Attack on the BLISS
Lattice-Based Signature Scheme

" Loop-Abort Faults on Lattice-
Based Fiat—-Shamir and Hash-
and-Sign Signatures

® Generalized Howgrave-Graham—
Szydlo and Side-Channel Attacks
Against BLISS

= Espiteau, Fouque, Girard,
Tibouchi, 2016

= “We present several fault
attacks against those schemes
yielding a full key recovery with
only a few or even a single
faulty signature”

= Strong attack model — requires
attacker to have control over
PRNG output




K Examples

= RSA Signing Fault Attack

®" Timing attack on NTRUEnNcrypt
via Variation in Number of Hash
Calls

" Flush, Gauss, and Reload — A
Cache Attack on the BLISS
Lattice-Based Signature Scheme

" | oop-Abort Faults on Lattice-
Based Fiat—-Shamir and Hash-

and-Sign Signatures

= Generalized Howgrave-Graham—
Szydlo and Side-Channel Attacks
Against BLISS

= Espiteau, Fouque, Girard,
Tibouchi, 2017

Our contributions. Our goal is to look at the security of embedded implemen-
tations of BLISS (particularly the 8-bit AVR microcontroller implementation of
Péppelmann et al. [POG15]) against side-channel attacks. Our main target is the
clever algorithm proposed in the original BLISS paper [DDLL13] to perform the
rejection sampling, which is intervenes in a crucial way in those embedded imple-
mentations. To achieve the correct output distribution, the signature generation
algorithm has to be restarted with probability:

s (155 (229)

where (z,c) is the signature generated so far, S the secret key, o the Gaussian
standard deviation and M a scaling factor ensuring that this probability is always
at most 1.

It turns out that the clever algorithm for rejection sampling, based on iterated
Bernoulli trials, traverses the bits of the two values (z, Sc) and K —||Sc||? (where
K is defined such that M = exp (K/(20%))) in much the same way as a square-
and-multiply algorithm traverses the bits of its exponent: one can basically read
those bits on a power or electromagnetic trace! This makes it possible to mount
an SPA/SEMA attack on the rejection sampling using either of these values.

Concretely, for the parameter set BLISS-0 (resp. BLISS-I and above), it
takes a few CPU hours (resp. a little over a CPU-month) to recover the exact
secret key up to multiplication by a root of unity, i.e. the exact key with its
coefficients possibly rotated around with appropriate sign flips. This recovered
key is functionally equivalent to the original one for the signature algorithm, and
we thus achieve full key recovery for the aforementioned “weak” keys.
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Countermeasures



0 Constant time algorithms

®" No conditional branches

— If ... then ... else ...
" No memory access w.r.t. secret data

= All secret data are only used as operands of constant time
arithmetic operations

—r=fhmodqv
—Iff=1,r+=h x



0 Avoid large/secret/non-constant time look-up tables

" Look up tables can be used to e
(significantly) reduce on-line oL el =
COmpUtatlon + e, 1, 2, ©, 1, 2, ©, 1, 2, o, 1, 2, o, 1, 2, o,

+ 16, 17, 18, 16, 17, 18, 16, 17, 18, 16, 17, 18, 16, 17, 18, 16,
- Smal R R

> 1, 2, e, 1, 2, o, 1, 2, 6, 1, 2, o, 1, 2, 0,

. + 16, 17, 18, 16, 17, 18, 16, 17, 18, 16, 17, 18, 16, 17, 18, 16,

o PUbIIC + 32, 33, 34, 32, 33, 34, 32, 33, 34, 32, 33, 34, 32, 33, 34, 32,

. + e, 1, 2, o, 1, 2, ©, 1, 2, O, 1, 2, o, 1, 2, o,

- ConStant tlme + 16, 17, 18, 16, 17, 18, 16, 17, 18, 16, 17, 18, 16, 17, 18, 16,

+ 32, 33, 34, 32, 33, 34, 32, 33, 34, 32, 33, 34, 32, 33, 34, 32,

" They may also leak side channel T A T T
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+ e, 1, 2, o, 1, 2, ©, 1, 2, O, 1, 2, o, 1, 2, o,

—_ Gaussian IOOk up tables VS BLISS + i6, 17, 18, 16, 17, 18, 16, 17, 18, 16, 17, 18, 16, 17, 18, 16,

+ 32, 33, 34, 32, 33, 34, 32, 33, 34, 32, 33, 34, 32, 33, 34, 32,

+ e, 1, 2, o, 1, 2, o, 1, 2, o, 1, 2, o, 1, 2, o}



0 Avoid large/secret/non-constant time look-up tables

= Constant-time Gaussian sampling
IS an active area of research

Gaussian Sampling over the Integers:
Efficient, Generic, Constant-Time

Daniele Micciancio Michael Walter
UCSD UCSD
daniele@cs.ucsd.edu miwalter@eng.ucsd.edu

March 21, 2017

Abstract

Sampling integers with Gaussian distribution is a fundamental problem that arises in almost every
application of lattice cryptography, and it can be both time consuming and challenging to implement.
Most previous work has focused on the optimization and implementation of integer Gaussian sampling
in the context of specific applications, with fixed sets of parameters. We present new algorithms for
discrete Gaussian sampling that are both generic (application independent), efficient, and more easily
implemented in constant time without incurring a substantial slow-down, making them more resilient to
side-channel (e.g., timing) attacks. As an additional contribution, we present new analytical techniques
that can be used to simplify the precision/security evaluation of floating point cryptographic algorithms,
and an experimental comparison of our algorithms with previous algorithms from the literature.

Time-Independent Discrete Gaussian Sampling
For Post-Quantum Cryptography

A. Khalid, J. Howe, C. Rafferty, and M. O’Neill

Centre for Secure Information Technologies (CSIT),
Queen’s University Belfast, UK.

This research proposes countermeasures against
timing information leakage with FPGA-based designs of the
CDT-based discrete Gaussian samplers with constant response
time, targeting encryption and signature scheme parameters. The
proposed designs are compared against the state-of-the-art and
are shown to significantly outperform existing implementations.
For encryption, the proposed sampler is 9x faster in comparison
to the only other existing time-independent CDT sampler design.
For signatures, the first time-independent CDT sampler in
hardware is proposed.



& Tailored hierarchical multiplication

NTRU743
Poly

| padding |

Constant time

105 multiplications (degree 32) vs 243 multiplications (degree 23) using Karatsuba only

Degree
768 Poly

Karat

suba

3 multiplications

Degree
96 Poly
| ‘, Degree " Degree
Degree ‘Toom-4 96 Poly 32 Poly
384 Poly || Degree ~Toom-3 [ Degree
[ 9%6Poly | 32 Poly
,| Degree Degree
96 Poly 32 Poly
Degree
384 Poly

Gain 2.3x if degree 32 mul = degree 23 mul

21 multiplications

105 multiplications




K NIST's FIPS-140 hybrid statement

" http://csrc.nist.gov/groups/ST/post-quantum-crypto/faqg.html

" Q: The call for proposals briefly mentions hybrid modes that
combine quantum-resistant cryptographic algorithms with
existing cryptographic algorithms (which may not be quantum-
resistant). Can these hybrid modes be FIPS-validated?

= A: Assuming one of the components of the hybrid mode in question
Is a NIST-approved cryptographic primitive, such hybrid modes can
be approved for use for key establishment or digital signatures.

= Conclusion: Customers may be in a position to request side-channel
resistant quantum-safe implementations sooner than you think!



®= Questions / Discussion



