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Introduction

I Ongoing practical research and development paves the way for
building large-scale quantum computers.

I Small scale quantum computers already exist.

I In about 20 years, large-scale quantum computers will become
a reality.

I Their computational power is much higher than that of the
classical computers used today.

I Their computational capabilities can be used to attack
cryptosystems!



Capabilities of Quantum Computers

I Quantum computers will be able to perform compuatations
much faster.

I In some areas much, much faster...exponential to polynomial
running time.

I Search algorithms can be performed in square root time
(Grover’s algorithm).

I Factorization and discrete logs can be computed in polynomial
time (Shor’s algorithm).



How is Cryptography Affected?

Symmetric:

I Generic square root quantum search algorithms apply.

I Need to double the key length.

Public-Key:

I Schemes, whose security is based on integer factorization
(RSA), can be broken in quantum polynomial time.

I Schemes, based on DLOG problem, can be broken in quantum
polynomial time.

I All of the currently standardized asymmetric cryptography
(RSA, ECC) can be efficiently broken by a quantum adversary!

I No ‘easy fix’ as for symmetric cryptography.



Why Do We Need to Worry About It Today?

“It will be too late to worry about it when quantum computers are
here.”

I It takes years to switch.

I For many products, the production cycle could be a decade or
two.

I The messages encrypted using classical techniques today can
be successfully decrypted tomorrow by quantum adversaries.

I Quantum computers might be here sooner than we expect...



Solution: Post-Quantum Cryptography

I We need classical cryptographic schemes, that would be
immune to quantum attacks.

I Post-Quantum Cryptography!

I Protects you today, against the threats of tomorrow.

I NIST is working on it.

I NSA is working on it.

I We are working on it and have solutions!



Post-Quantum Cryptography

I Elliptic Curve Isogeny-Based Cryptography.

I Hash-Based Signatures.

I Lattice-Based Cryptography.

I Code-Based Systems.

I Multivariate Polynomials-Based Systems.



Elliptic Curves

We assume that F is a finite field of characteristic greater than 3.
“Finite field” is essential, because cryptography uses finite fields.
“Characteristic greater than 3” is not essential, but it simplifies
matters greatly.

Definition
An elliptic curve over F is the set of solutions (x , y) ∈ F 2 to an
equation

y2 = x3 + ax + b, a, b ∈ F ,

plus an additional point ∞ (at infinity).
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Elliptic curves admit an abelian group operation with identity
element ∞. Let P = (x1, y1) and Q = (x2, y2). Then
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Isogenies

Definition
Let E and E ′ be elliptic curves over F .

I An isogeny φ : E → E ′ is a non-constant algebraic morphism

φ(x , y) =

(
f1(x , y)

g1(x , y)
,
f2(x , y)

g2(x , y)

)
satisfying φ(∞) =∞ (equivalently,
φ(P + Q) = φ(P) + φ(Q)).

I The degree of an isogeny is its degree as an algebraic map.

I The endomorphism ring End(E ) is the set of isogenies from
E (F ) to itself, together with the constant homomorphism.
This set forms a ring under pointwise addition and
composition.



Examples

Example (Scalar multiplication)

I Let E : y2 = x3 + ax + b.

I For n ∈ Z, define [n] : E → E by [n](P) = nP. Then [n] is an
isogeny of degree n2.

I When n = 2,

[2](x , y) =

(
x4 − 2ax2 − 8bx + a2

4(x3 + ax + b)
,

(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx − 8b − a)y

8(x3 + ax + b)2

)
I An explicit formula for [n] is given recursively by the so-called

division polynomials.



Ordinary and Supersingular Curves

Theorem
Let E be an elliptic curve defined over a finite field. As a
Z-module, dimZ End(E ) is equal to either 2 or 4.

Definition
An elliptic curve E over a finite field is supersingular if
dimZ End(E ) = 4, and ordinary otherwise.

I Ordinary curves are more secure for DLOG cryptography.

I For any isogeny φ : E → E ′, the curves E and E ′ are always
either both ordinary or both supersingular.



Isogenies and Kernels

I Given any finite subgroup K ⊂ E of size n, there exists a
unique isogeny (up to isomorphism)

φ : E → E ′

such that
ker φ = K .

I deg φ = n = #K .

I Denote E ′ by E/K .
I Example:

I Let P ∈ E and ord (P) = n.
I Set K = 〈P〉 = {xP : x ∈ Z}.
I φ : E → E/〈P〉 and deg φ = n.
I Compute this with Vélu’s formulas.



m-Torsion Points and Their Applications

I For a curve E/Fq and m relatively prime to q, the set of
m-torsion points is

E [m] = {P ∈ E (F̄q) : mP =∞}.

I E [m] is isomorphic to (Z/mZ)2.

Setup:

I Fix a prime p of the form `eAA `
eB
B · f ± 1.

I Fix a supersingular curve E defined over Fp2 , and bases
{PA,QA} and {PB ,QB} which generate E [`eAA ] and E [`eBB ]
respectively.



Determining Isogenous-ity

Theorem (Tate 1966)

Two curves E and E ′ are isogenous over Fq if and only if
#E = #E ′.

Remark
The cardinality #E of E can be calculated in polynomial time
using Schoof’s algorithm [Schoof 1985], which, incidentally, is also
based on isogenies.



Brief Summary (Background)

I It’s easy to figure out if two curves are isogenous, but hard to
find that isogeny.

I We only use supersingular elliptic curves, as they are more
secure.

I Isogenies are group homomorphisms, i.e. for points P,Q ∈ E
and integers m, n,
φ(m · P + n ·Q) = φ(m · P) + φ(n ·Q) = m · φ(P) + n · φ(Q).

I Rather than working with isogenies, we work with the kernel
of isogenies, which can be represented with one elliptic curve
point.

I Let K be the corresponding kernel point to isogeny φ, then we
can denote φ : E → E ′ = E/〈K 〉.

I Prime p is of the form `eAA `
eB
B · f ± 1.



Underlying Hard Problem

Given two isogenous elliptic curves E and E ′, find an isogeny
between them.

I For supersingular elliptic curves, this problem is fully quantum
exponential.



Keys

Scheme’s public parameters:

I Elliptic curve E defined over Fp2 .

I Bases {PA,QA} and {PB ,QB}.
User A decides to use basis {PA,QA} and does the following:

I Randomly selects integers mA, nA ∈ Z`
eA
A

.

I Computes the elliptic curve point KA = mA · PA + nA · QA.

I Computes the image curve φA : E → E/〈KA〉 = EA.

I Evaluates φA(PB) and φA(QB).

User A’s private key is: integers mA, nA.

User A’s public key is: elliptic curve EA and elliptic curve points
φA(PB) and φA(QB).



Key Agreement

User A’s parameters:

I Private: integers mA, nA.

I Public: elliptic curve EA and elliptic curve points
A1 = φA(PB) and A2 = φA(QB).

User B’s parameters:

I Private: integers mB , nB .

I Public: elliptic curve EB and elliptic curve points
B1 = φB(PA) and B2 = φB(QA).

User A and user B exchange their public information.



Key Agreement (A’s side)

User A does the following:

1. Using user B’s public points and user A’s own private integers,
computes the elliptic curve point KBA = mA · B1 + nA · B2.
Note:

mA · B1 + nA · B2 = mA · φB(PA) + nA · φB(QA)

= φB(mA · PA) + φB(nA · QA)

= φB(mA · PA + nA · QA)

= φB(KA).

2. Using user B’s curve and value KBA, computes
φBA : EB → EB/〈KBA〉 = EBA.
OBSERVATION:
EBA = EB/〈φB(KA)〉 = E/〈KB〉/〈φB(KA)〉 = E/〈KB ,KA〉.

3. Computes j-invariant(EBA).



Key Agreement (B ’s side)

User B does the following:

1. Using user A’s public points and user B’s own private integers,
computes the elliptic curve point KAB = mB · A1 + nB · A2.
Note:

mB · A1 + nB · A2 = mB · φA(PB) + nB · φA(QB)

= φA(mB · PB) + φA(nB · QB)

= φA(mB · PB + nB · QB)

= φA(KB).

2. Using user A’s curve and value KAB , computes
φAB : EA → EA/〈KAB〉 = EAB .
OBSERVATION:
EAB = EA/〈φA(KB)〉 = E/〈KA〉/〈φA(KB)〉 = E/〈KA,KB〉.

3. Computes j-invariant(EAB).



Key Agreement (Aftermath)

Value obtained by user A is EBA = E/〈KB ,KA〉.
Value obtained by user B is EAB = E/〈KA,KB〉.

But! 〈KB ,KA〉 = 〈KA,KB〉.

This means that EAB and EBA are the same curves (up to
isomorphism).

Result: j-invariant(EBA) = j-invariant(EBA) ← common key.



Key Agreement

Private parameters Public parameters
Alice: mA, nA ∈R Z/`eAA Z Alice: EA

φA : E → EA φA(PB), φA(QB) ∈ EA

Bob: mB , nB ∈R Z/`eBB Z Bob: EB

φB : E → EB φB(PA), φB(QA) ∈ EB

Shared secret: EAB .
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What Else Can be Done?

I Public-Key Encryption

I Undeniable Signatures

I Strong Designated Verifier Signatures

I Entity Authentication

I Authenticated Encryption

I Integrated Encryption

I Much more in progress...successful progress...!



Why Isogenies?

I Elliptic Curve Cryptography is a well-understood area

I Can reuse a lot of implementations from classical ECC

I Clear security parameters

I Mathematical proofs

I Short key sizes

I Small communication overhead



Timeline of Required Post-Quantum Solutions
Now:

I Public-Key Encryption

I Key Agreement

I Authenticated Encryption

I Integrated Encryption

Between now and the emergence of quantum computers:

I Digital Signatures

I Entity Authentication

I Authentication-related blocks of any scheme



Summary, Remarks and Future Development

I Quantum computers are likely to become a reality within
approximately 20 years.

I We need to be protected against quantum adversaries today.

I The protection must be on the present-day computer;
Post-Quantum Cryptography!

I ECC survives; Elliptic Curve Isogenies!

I Protection against quantum adversaries is available today!

I It is possible to replace classical components with
quantum-resistant solutions in PKI (and other infrastructures)
today.

I Research, development, standardisation, and integration are in
progress and will continue.



Thank You!


