

Quantum threat...and quantum solutions

How can quantum key distribution be integrated into a quantum-safe security infrastructure

Bruno Huttner ID Quantique

Outline

- → Presentation of ID Quantique
- ☐ The Quantum Threat
- ☐ Quantum Solutions (1): QRNGs
- ☐ Quantum Solutions (2): QKD
- ☐ Integration of QKD in optical networks today
- ☐ Towards a world-wide QKD network
- Conclusion

ID Quantique – Company Profile

Founded in 2001

Geneva, Switzerland

Key technology: photon counting

Three business units:

- Photon counting & Instrumentation
- Quantis: Quantum Random Number for Key Generation
- Quantum-Safe Security

Performs R&D, production, professional services, integration, support

Clients: Governments / Banks / Gaming Industry / Universities / IT Security

The Quantum Threat

The hacker's point of view today...

... and after the Quantum Computer

QUANTUM SOLUTION (1): QUANTUM KEY GENERATION

True Random Number Generator based on Quantum Physics

QUANTUM SOLUTION (2): QUANTUM KEY DISTRIBUTION

Quantum Key Distribution (QKD): Basic idea

QKD: The quantum Channel

Classical Service Channel

...and generate errors, which will be detected through discussions over the Service Channel

Pros	Cons	
Based on different principle (physics)	Need physical infrastructure	
Not impacted by QC	Limited distance between nodes (to date)	
Provable security of transmission	Only part of the solution:	
Real-time eavesdropping possible only	Needs conventional crypto to use the key (e.g. symmetric key encryption); And post-quantum Authentication	
Adds one layer of security	Alla post qualitatil Authoritication	

- More complicated and costly to implement
- Useful for high-level and long-term security

INTEGRATING QKD IN QUANTUM-SAFE SECURITY INFRASTRUCTURE

All links are NOT born equal!

Safety has to be adapted to the communication links.

Use QKD today as an add-on to current encryption systems

Use QKD today for Critical Links

Towards integration in security infrastructure

ROADMAP FOR QKD

- ☐ Trusted Nodes for long-distance QKD
- ☐ Free Space QKD with satellites
- ☐ Global QKD Network based on Quantum Memories

Step 1: Long distance QKD with Trusted Nodes

What about longer links: The Chinese Quantum Backbone

- Total Length 2000 km
- **2013.6-2016.12**
- 32 trustable relay nodes 31 fiber links
- Metropolitan networks Existing: Hefei, Jinan

New: Beijing, Shanghai

- Customer: China Industrial
- & Commercial Bank; Xinhua

News Agency; CBRC

Step 2: A Global Network Based on Free Space QKD

- Free Space QKD
 - QKD links with LEO satellites
 - LEO acts as a **trusted node** to transport the key to the necessary location.
- Free space QKD is moving out of the lab & into industry
 - Chinese have launched a QKD satellite in August 2016 and QKD system in space station in September.
 - Worldwide interest at the academic/ government level
 - IDQ has started feasibility studies for practical systems (Eurostars and Swiss Space Office)

Step 3: A world-wide QKD infrastructure

- Build a QKD infrastructure based on Quantum Memories (QM)
- □ Each node exchanges QMs with the others
- Customers come to any node to recharge their QMs (similar to bank notes and ATM infrastructure)
- Nodes need not be trusted anymore

What the Quantum has taken away...

...the Quantum can give back!

For more information http://www.idquantique.com

QKD for Access Network: one Bob, many Alices...

Data at rest

Data in transit

Two requirements:

- Authentication
- Confidentiality

Timing issues

Cybersecurity systems should guarantee confidentiality for a long time

The path to confidentiality: symmetric key crypto

Possible methods:

- ☐ Trusted courier (⑤)
- □ Public key cryptography (not quantum-safe today...)
- Quantum key distribution

THE TOOLS QUANTUM RESISTANT ALGORITHMS

Quantum-Resistant algorithms

Name of method	Application	Resilience against Quantum Computer
DH	Key exchange	No
RSA	Key exchange, signature	No
ECC	Key exchange, signature	No
AES	Encryption	Widely believed
Hash-based	Authentication	Widely believed
Lattice-based (NTRU, New Hope)	Key exchange; signature	Believed
Code-based (Mc Eliece)	Key exchange	Believed
Multivariate polynomials	Key exchange; signature	Uncertain so far
•••		

High level of confidence

Under investigation

Post-Quantum PK Algorithms: Pros & Cons

Pros	Cons
Direct replacement of current PKs	 No proof of security
 Keep all infrastructure 	 Not yet well-studied
 May be easily adapted to security protocols 	Resilience against QC not proven
 Interesting approach: hybrid systems, e.g. RSA + Lattice 	Might be only a temporary solution

- → Probably the easiest to implement and most appealing solution...
- → But concerns about long-term security

