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Overview of the talk	

•  The use of Random Number 

Generators	

•  Key generation for the symmetric-

key algorithms	

–  AES, Triple-DES, special cases 

of key usage	

–  The applicable NIST 

publications 	

•  Generation of keys for the 

asymmetric algorithms 	
	

–  What makes the RSA key generation 

difficult	




The use of the RNGs	

•  Each secret key has to be unpredictable	


–  Entropy sources	


–  Deterministic Random Generators	


	


•  Estimating the amount of randomness	

	


•  When can a random number be used 
directly as a cryptographic key?	

–  The key may need to be modified to possess 

some additional properties	




	


•  AES keys	


•  Triple-DES keys	


•  Nonces and IVs	


•  Keys for storage applications	


•  The dependency among the bits of 
(certain) keys	


	


Key Generation for the 
symmetric-key algorithms	




•  Implementation Guidance 7.8	

–  Six main methods	

–  Post-processing	

	


•  SP 800-132	


•  SP 800-133	

–  The post-processing is left for SP 800-90A	


	


NIST Publications	




•  Key generation for the signature 
algorithms: DSA, ECDSA and RSA	


	

•  The same issues must be addressed 

when generating private keys for the 
asymmetric-key-based key agreement 
and key transport schemes	


•  Again, it all starts (but not ends) with 
SP 800-133 / IG 7.8	

	


	


Generation of Private Keys for the 
Asymmetric Algorithms	




•  First, the domain parameters: p, q, g 
need to be generated	


•  If N is the bit length of q, then obtain 
an N+64 bit random string	


•  The requirements of IG 7.8 or SP 
800-133 apply as if this string were a 
key	


 	

•  Convert the bit string into an integer, c	


•  The private key x is set to 	

c (mod (q-1)) + 1. 	

This, given the size of c,  guarantees a 
sufficiently uniform distribution of private 
keys	

	


•  The public key is y=gx (mod p).	

	


	


Digital Signature Algorithm	




•  First, the domain parameters: the field; 
the parameters that define the curve; 
base point G, the prime n which is the 
order of G, the co-factor h.  (The 
number of points on the curve is n*h.)	


•  If N is the bit length of n, then obtain 
an N+64 bit random string	


•  The requirements of IG 7.8 or SP 
800-133 apply as if this string were a 
key	


•   Convert the bit string into an integer, c	

•  The private key d is set to 	


c (mod (n-1)) + 1.	

This, given the size of c,  guarantees a 
sufficiently uniform distribution of private 
keys	


•  The public key is a point Q = dG on the 
curve	


	


Elliptic Curve Digital Signature 
Algorithm	




•  More complicated key generation than 
with the other algorithms due to the 
different nature of the RSA	


•  First, generate the seed, in compliance 
with SP 800-133 or IG 7.8 	


•  Use the seed as a starting point when 
generating an auxiliary prime p2	


•  Use an updated seed to generate p1 . 
Consult FIPS 186-4 for the size of 
these primes and for the required 
number of the Miller-Rabin tests	


	


	


	

	


RSA Signature Algorithm	




	

•  Use a (further) updated seed to 

generate p	

	

•  The prime may either be generated as a 

probable prime or as a provable prime.  
Even with a provable prime there is a 
(tiny) chance that it will be composite	


	

•  Generate the prime q in a similar way 

and check the conditions on the (p, q) 
pair	


	


	


	

	


RSA Signature Algorithm (continues)	




Summary	

•  Key generation is one of several ways to 

establish a key	


•  Key generation requires entropy	


•  Key generation requires an approved 
random number generator	


•  Key generation for the symmetric 
algorithms is straightforward, but has to 
comply with SP 800-133 / IG 7.8	


•  Generating keys for ECDSA is more 
complicated	


•  In case of RSA, the compliance with SP 
800-133 / IG 7.8 is just a staring point.  	


	



