
Challenges in Generating Keys for
Asymmetric-Key Algorithms	

	

	

	

	

	

	

Allen Roginsky	

	

CMVP NIST 	

November 2015	

	

Overview of the talk	

•  The use of Random Number

Generators	

•  Key generation for the symmetric-

key algorithms	

–  AES, Triple-DES, special cases

of key usage	

–  The applicable NIST

publications 	

•  Generation of keys for the

asymmetric algorithms 	
	

–  What makes the RSA key generation

difficult	

The use of the RNGs	

•  Each secret key has to be unpredictable	

–  Entropy sources	

–  Deterministic Random Generators	

	

•  Estimating the amount of randomness	

	

•  When can a random number be used
directly as a cryptographic key?	

–  The key may need to be modified to possess

some additional properties	

	

•  AES keys	

•  Triple-DES keys	

•  Nonces and IVs	

•  Keys for storage applications	

•  The dependency among the bits of
(certain) keys	

	

Key Generation for the
symmetric-key algorithms	

•  Implementation Guidance 7.8	

–  Six main methods	

–  Post-processing	

	

•  SP 800-132	

•  SP 800-133	

–  The post-processing is left for SP 800-90A	

	

NIST Publications	

•  Key generation for the signature
algorithms: DSA, ECDSA and RSA	

	

•  The same issues must be addressed

when generating private keys for the
asymmetric-key-based key agreement
and key transport schemes	

•  Again, it all starts (but not ends) with
SP 800-133 / IG 7.8	

	

	

Generation of Private Keys for the
Asymmetric Algorithms	

•  First, the domain parameters: p, q, g
need to be generated	

•  If N is the bit length of q, then obtain
an N+64 bit random string	

•  The requirements of IG 7.8 or SP
800-133 apply as if this string were a
key	

 	

•  Convert the bit string into an integer, c	

•  The private key x is set to 	

c (mod (q-1)) + 1. 	

This, given the size of c, guarantees a
sufficiently uniform distribution of private
keys	

	

•  The public key is y=gx (mod p).	

	

	

Digital Signature Algorithm	

•  First, the domain parameters: the field;
the parameters that define the curve;
base point G, the prime n which is the
order of G, the co-factor h. (The
number of points on the curve is n*h.)	

•  If N is the bit length of n, then obtain
an N+64 bit random string	

•  The requirements of IG 7.8 or SP
800-133 apply as if this string were a
key	

•  Convert the bit string into an integer, c	

•  The private key d is set to 	

c (mod (n-1)) + 1.	

This, given the size of c, guarantees a
sufficiently uniform distribution of private
keys	

•  The public key is a point Q = dG on the
curve	

	

Elliptic Curve Digital Signature
Algorithm	

•  More complicated key generation than
with the other algorithms due to the
different nature of the RSA	

•  First, generate the seed, in compliance
with SP 800-133 or IG 7.8 	

•  Use the seed as a starting point when
generating an auxiliary prime p2	

•  Use an updated seed to generate p1 .
Consult FIPS 186-4 for the size of
these primes and for the required
number of the Miller-Rabin tests	

	

	

	

	

RSA Signature Algorithm	

	

•  Use a (further) updated seed to

generate p	

	

•  The prime may either be generated as a

probable prime or as a provable prime.
Even with a provable prime there is a
(tiny) chance that it will be composite	

	

•  Generate the prime q in a similar way

and check the conditions on the (p, q)
pair	

	

	

	

	

RSA Signature Algorithm (continues)	

Summary	

•  Key generation is one of several ways to

establish a key	

•  Key generation requires entropy	

•  Key generation requires an approved
random number generator	

•  Key generation for the symmetric
algorithms is straightforward, but has to
comply with SP 800-133 / IG 7.8	

•  Generating keys for ECDSA is more
complicated	

•  In case of RSA, the compliance with SP
800-133 / IG 7.8 is just a staring point. 	

	

