
1

Fast, Quantum-Resistant Public-Key
Solutions for Constrained Devices Using
Group Theoretic Cryptography

International Cryptographic

Module Conference

May 18, 2017

Derek Atkins, Chief Technology Officer



2

Real World Problems
How do you secure devices that have minimal processing power or energy?

I AES? Requires explicit key management

Solution: use a Public Key Algorithm

I RSA, ECC, and DH? all require too much time/CPU/power

I Software implementations are too slow

I Hardware implementations require too much silicon

Need a Lightweight Solution

Enter Group Theoretic Cryptography



3

So What Is Group Theoretic Cryptography?
Talk Outline

I Enter Group Theoretic Cryptography

I Math Primer and E -Multiplication

I Ironwood Key Agreement Protocol

I Walnut Digital Signature Algorithm

I Conclusions



4

Enter Group Theoretic Cryptography (GTC)

I Hard problems have been studied over
100 years

I GTC dates to the 1970s

I Computational complexity scales
linearly with security (instead of
quadratically like RSA, ECC, and DH)



5

GTC Deconstructed

I Every public-key method is based on several math foundations; GTC
is no different.

I GTC leverages structured groups, matrices, permutations, and
arithmetic over finite fields.

I The structured group used for GTC is the Braid Group.

I Note that there have been other uses of the Braid Group for
cryptography (some of which have been broken); GTC is different
than those.

I GTC is not “Braid Group Cryptography”



6

The Artin Braid Group

Braids
Introduced by Emil Artin in 1921, a braid is a configuration of strands of
the form:

	
  

1/15/2015 Draw a braid

http://www.stephentawn.info/stephentawn.info/draw/draw2.html 1/1

Improved draw a braid

-‐‑2, -‐‑1,2,-‐‑3,1,-‐‑2
Horizontal: 

Submit



7

Multiplying Braids

Two braids can be concatenated to yield a third braid:

	
  

1/16/2015 Draw a braid

http://www.stephentawn.info/stephentawn.info/draw/draw2.html 1/1

Improved draw a braid

-‐‑1, -‐‑3,-‐‑2,-‐‑1,-‐‑3, -‐‑2,-‐‑1
Horizontal: 

Submit

1/16/2015 Draw a braid

http://www.stephentawn.info/stephentawn.info/draw/draw2.html 1/1

Improved draw a braid

-‐‑1,-‐‑3, -‐‑2,-‐‑1
Horizontal: 

Submit

1/16/2015 Draw a braid

http://www.stephentawn.info/stephentawn.info/draw/draw2.html 1/1

Improved draw a braid

-‐‑3, -‐‑2,-‐‑1
Horizontal: 

Submit



8

Identity Element
The braid without any crossings functions as an identity element:

	
  

	
  

1/16/2015 Draw a braid

http://www.stephentawn.info/stephentawn.info/draw/draw2.html 1/1

Improved draw a braid

-‐‑1, -‐‑2, 3 ,3,1,2
Horizontal: 

Submit

1/16/2015 Draw a braid

http://www.stephentawn.info/stephentawn.info/draw/draw2.html 1/1

Improved draw a braid

-‐‑1, -‐‑2, 3 ,3,1,2
Horizontal: 

Submit

1/16/2015 Draw a braid

http://www.stephentawn.info/stephentawn.info/draw/draw2.html 1/1

Improved draw a braid

-‐‑1, -‐‑2, 3 ,3,1,2
Horizontal: 

Submit

	
   	
  



9

Inverses
The inverse of a braid can be found by inverting the crossings and
multiplying in the reverse order: the inverse of the braid β

	
  

1/16/2015 Draw a braid

http://www.stephentawn.info/stephentawn.info/draw/draw2.html 1/1

Improved draw a braid

1,-‐‑2,-‐‑3,2
Horizontal: 

Submit

	
  
	
  	
  	
  	
  𝛽 =  	
  

is given by

	
  

	
  
	
  	
  	
  β-­‐! =	
  

1/16/2015 Draw a braid

http://www.stephentawn.info/stephentawn.info/draw/draw2.html 1/1

Improved draw a braid

-‐‑2, 3, 2, -‐‑1
Horizontal: 

Submit



10

Braid Generators
Every braid β on N strands can be viewed as a product of a sequence of
braids with a single crossing, denoted b1, . . . , bN−1, and their inverses.
For example, when N = 4 we have

	
  

1/16/2015 Draw a braid

http://www.stephentawn.info/stephentawn.info/draw/draw2.html 1/1

Improved draw a braid

 -‐‑1
Horizontal: 

Submit

	
  
	
  	
  	
  𝑏! =	
  

1/16/2015 Draw a braid

http://www.stephentawn.info/stephentawn.info/draw/draw2.html 1/1

Improved draw a braid

 -‐‑1
Horizontal: 

Submit

	
  
	
  	
  	
  𝑏! =	
  

	
  	
  
	
  	
  	
  	
  

    
𝑏! =	
  

1/16/2015 Draw a braid

http://www.stephentawn.info/stephentawn.info/draw/draw2.html 1/1

Improved draw a braid

 -‐‑1
Horizontal: 

Submit

	
  

	
  
𝑏!!! =  

1/16/2015 Draw a braid

http://www.stephentawn.info/stephentawn.info/draw/draw2.html 1/1

Improved draw a braid

1,
Horizontal: 

Submit

	
  
𝑏!!! =  
	
  

1/16/2015 Draw a braid

http://www.stephentawn.info/stephentawn.info/draw/draw2.html 1/1

Improved draw a braid

1,
Horizontal: 

Submit

	
  
	
  	
  	
  𝑏!!! =  
	
  

1/16/2015 Draw a braid

http://www.stephentawn.info/stephentawn.info/draw/draw2.html 1/1

Improved draw a braid

1,
Horizontal: 

Submit



11

Associated Permutations

Every braid β has a natural permutation σβ associated with it: for
i = 1, 2, . . . ,N the value of σβ(i) is the endpoint of the strand
originating at the point i . Below, 1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 1.

	
  

1/17/2015 Draw a braid

http://www.stephentawn.info/stephentawn.info/draw/draw2.html 1/1

Improved draw a braid

-‐‑3,-‐‑2,1,2,2
Horizontal: 

Submit

1	
   2	
   4	
  3	
  

1	
   2	
   4	
  3	
  



12

Pure Braids
Braids with trivial permutations

You can find braids that are not identity braids but still have a trivial
permutation:

Note how each strand ends in the same position where it started.



13

Colored Burau Representation of BN

Each b±1
i is associated with the ordered pair

(
CB(bi )

±1, σi
)

where σi is
the transposition (i , i + 1),

CB(bi ) =


1

. . .

ti −ti 1
. . .

1

 ,CB(b−1
i ) =


1

. . .

1 − 1
ti+1

1
ti+1

. . .

1

 .

By letting permutations act on the left on the matrices CB(bi ) (by
permuting the variable entries), the ordered pairs (CB(bi )

±1, σi ) form a
semi-direct product which satisfy the braid relations. This gives a
representation of BN .



14

E -Multiplication (denoted ?)

A one-way function, a building block for all SecureRF group-theoretic
cryptographic constructions.

E -Multiplication System Data

• BN = the braid group on N strands

• Fq = a finite field of q elements.

• A set of T-values {τ1, τ2, . . . , τN} ⊂ F×q .

• m ∈ GL(n,Fq), σ ∈ SN .



15

E -Multiplication Continued

E -Multiplication by one Artin generator

(m, σ) ?
(
CB(bi ), (i , i + 1)

)

=

m ·


1

. . .
τσ(i) −τσ(i) 1

. . .
1

 , σ · (i , i + 1)


By iterating this computation we can compute the E-Multiplication of
(m, σ) with an arbitrary braid element (finite product of Artin generators
and their inverses).



16

E -Multiplication Example

Assume we are working in B4F7 with T-values 2 4 6 3. To start we have a
matrix and permutation: 

1 4 3 5
2 5 2 6
3 6 2 1
2 4 2 5

 , (2, 4, 3, 1)

Next we want to apply b2. We apply the current permutation and
T-values to the CB matrix:

1 0 0 0
t2 −t2 1 0
0 0 1 0
0 0 0 1

 →


1 0 0 0
3 4 1 0
0 0 1 0
0 0 0 1


Then we matrix-multiply with the finite field F7 and apply the braid twist

to wind up with the following matrix and permutation:
6 2 0 5
3 6 0 6
0 3 1 1
0 2 6 5

 , (2, 3, 4, 1)



17

Laurent Polynomial Entry
Short random word of length 10 in B4 o S4 – What E -Multiplication erases!



18

Shortest Word Problem

The (true) length of a braid is the minimal number of crossings needed to
represent it. Finding this is a known hard (NP-Hard!) problem.

A given braid has many different representations in terms of crossings,
because we consider two braids to be the same if one can be manipulated
into the other without moving the ends or cutting.



19

Conjugacy Search Problem

The conjugacy search problem (CSP):

I Assume a braid of the form w a w−1 (aka a conjugate) where a is
known

I The Problem: find w .

Unfortunately, this is not a hard problem in many cases. There are
algorithms that exist to solve this problem efficiently.

The good news is that none of these algorithms depend on the CSP.



20

Group Theoretic Cryptographic Constructions

Many methods. All based on E -Multiplication:

I IronwoodTM Key Agreement Protocol
Enables two endpoints to generate a shared secret over an open
channel.

I WalnutTM Digital Signature Algorithm
Allows one device to generate a document that is verified by another.
Very fast verification

I KayawoodTM Key Agreement Protocol

I HickoryTM Hash (Cryptographic Hash Function)

Today we will focus on Ironwood KAP and WalnutDSA



21

Group Theoretic Cryptography
Breakthrough Performance over Number Theoretic Cryptography

I Diffie-Hellman type Key
Agreement

I DSA-like Digital Signature

I Based on Infinite Groups

I “Linear-in-Time” Security
Strength

I Safe against known Quantum
Attacks



22

The IronwoodTM Key Agreement Protocol

Public (system wide) Information:
• BN (The braid group in N strands)
• Fq (A finite field with q elements)
• A matrix m0 ∈ GL(N,Fq)

Private Information (created by TTP):
• A set of T-values {τ1, τ2, . . . , τN} ⊂ F×q .
• Two sets of rewritten commuting conjugates:

A =
{
zα1z

−1, zα2z
−1, . . . , zαkz

−1
}
,

B =
{
zβ1z

−1, zβ2z
−1, . . . , zβkz

−1
}
.

where some αi are purebraids, and z is destroyed after use.



23

Generating Home Device (HD) Keys

Home Device private/public key pair creation

Step 1: Generate two non-singular matrices:

C =
N−1∑
k=0

ckm
k
0 , C ′ =

N−1∑
k=0

c ′km
k
0 ,

(
with ck , c

′
k ∈ Fq

)
.

Step 2: Generate two braids, β, β′ with the same permutation σ.

Step 3: Using the T-values, compute the following two E-Multiplications:

(C , Id) ? (β, σ) := (CM, σ), (C ′, Id) ? (β′, σ) := (C ′M ′, σ).

Step 4: Compute the HD public key:
PubHD = (CM(C ′M ′)−1)−1 = C ′M ′M−1C−1



24

HD Keys: What Does This Mean?

I C and C ′ are private matrices
Fixed Size (based on N and q)
Need to be kept secure

I β and β′ are private braids
Variable Size
Also need to be kept secure

I The public key (PubHD) is a also matrix, which gets shared with
other devices.
It can be encoded into a certificate for identity verification.

I T-values are also stored on the device and must remain secure.



25

Generating the Other Device (OD) Keys (Tokens)

Other Device private/public data creation

Step 1: Generate a non-singular matrix:

Ci =
N−1∑
k=0

ck,im
k
0 ,

(
with ck,i ∈ Fq

)
,

Step 2: Generate a random braidword βi using the Other Device
conjugates.

Step 3: Compute the public key: Pubi := (Ci , Id) ? (βi , σi ) = (Mi , σi ),
where Id is the identity permutation.

Note that this operation must occur on the TTP, and the resulting data
must be securely provisioned onto the device. Also note that this device
does not need access to the T-values.



26

OD Keys: What Does This Mean?
Data stored on e.g. a smartphone

I Ci is a private matrix
Fixed Size (based on N and q)
Needs to be kept secure
(Same size at the matrix on the HD)

I The public key (Pubi ) is a matrix plus permutation, which gets
shared.
It is signed by the CA.



27

Ironwood KAP Shared Secret

After keys are generated, the Ironwood KAP proceeds as follows:

Step 1: Devices exchange public keys (Pubi and PubHD)

Step 2: Home Device computes the following two E-Multiplications:

(CMi , σi ) ? (β, σ) := (Y , σiσ), (C ′Mi , σi ) ? (β′, σ) := (Y ′, σiσ).

Step 3: Home Device computes the column vectors:

s = (N/2)th column of the matrix Y , s ′ = (N/2)th column of the matrix Y ′.

Step 4: Home Device sends s to the other device.

Step 5: Other Device computes the matrix and vector multiplications:

s ′ = Ci

(
C ′M ′M−1C−1

)
C−1
i · s = CiPubHDC

−1
i ,

where s ′ is the shared secret



28

Shared Secret: What Does That Mean?

I The devices share their public keys (Pubi and PubHD)

I Certificates are validated

I The HD computes two column vectors, s and s ′

I It sends s to the other device; s ′ is the shared secret

I The other device computes the shared secret (s ′) using PubHD ,Ci ,
and s



29

Walnut Digital Signature AlgorithmTM

I Quantum-resistant public-key digital signatures

I Based on SecureRF’s Group Theoretic Cryptography

I Leverages E -Multiplication for extremely fast verification

I Security is based on the hard problems of solving a novel equation
over the braid group and reversing E -Multiplication



30

WalnutDSATM Architecture

Hash
Function

Sign

Verify

Private Key

Public Key

Signature

Message

Verification
Result



31

Generating WalnutDSA Keys

I Choose BnFq (e.g. B8F32 for 2128 security level (sl))

I Generate Random T-values (not 0 or 1)

I Choose exactly two (2) T-values (positions a,b) as 1

I Choose PrivS as a random braid of length at least
n sl/

(
4 log2((n − 1)(n − 2))

)
I Compute and Distribute Public Key (PubS) as:

I T-values
I E -Multiplication result: (1, 1) ? PrivS



32

WalnutDSA Signature Generation

I Take a 256-bit message (e.g. M=Hash(Input), for 2128 security)

I Encode as a braid: E(M)

I Choose a random number 1 < i < n
I Generate Cloaking Elements v and v1 as purebraids

I Built by conjugating a square of a braid generator (w b2
i w

−1), where
I The permutation of w takes element i to a and i + 1 to b for v

(v1 is constructed in an analogous manner)
I The purpose of the cloaking elements are to obscure PrivS from the

CSP. They stabilize the E -Multiplication action.

I Signature is: Priv−1
S v E(M)PrivS v1 – rewritten to hide the form



33

More on WalnutDSA Cloaking Elements

I Recall that CSP requires a braid of the form z a z−1

I A Cloaking Element is a special braid that disappears during
E -Multiplication but protects a braid from the CSP by preventing the
necessary form

I Formed by a braid βCE = w b2
i w
−1

I The result is that (1, 1) ? βCE = (1, 1)

I Based on the actual form of w and choices of a, b, and i , a cloaking
element can also result in (1, σ) ? βCE = (1, σ)

Note: Cloaking Elements are a novel idea by SecureRF.



34

WalnutDSA Signature Validation

I Take a 256-bit message (e.g. M=Hash(Input))

I Encode as a braid: E(M)

I Compute the E -Multiplication: (MatM ,Perm1) = (1, 1) ? E(M)

I Multiply MatM with PubS : Mat1 = MatM · PubS
I Compute the E -Multiplication: (Mat2,Perm2) = PubS ? Sig

I Verify that the matrices are equal:
Mat1 =? Mat2



35

WalnutDSA: Did you notice?

I Structurally similar to DSA, ECDSA (versus RSA signatures)

I No TTP Required

I No Public Conjugates

I No Public System-wide Data



36

Performance of WalnutDSA Verification

B8F32, 2
128 Security level (equivalent to ECC P256)

Platform Clock WalnutDSA ECDSA Gain
MHz ROM1 RAM1 Time2 ROM1 RAM1 Time2 (Time)

MSP430 8 3244 236 46 20-30K 3 2-5K 1000-3000 21-63x
8051 24.5 3370 312 35.3

ARM M3 48 2952 272 5.7 7168 4 540 233 40.8x
FPGA 50 0.05 2.08 5 41.6x

1 ROM/RAM in Bytes
2 Time is in milliseconds.
3 C.P.L. Gouvêa and J. López, Software implementation of Pairing-Based Cryptography on sensor networks using the MSP430
micro controller, Progress in Cryptology, Indocrypt 2009
4 Wenger, Unterluggauer, and Werner in 8/16/32 Shades of Elliptic Curve Cryptography on Embedded Processors in Progress
in Cryptology, Indocrypt 2013
5 Jian Huang, Hao Li, and Phil Sweany, An FPGA Implementation of Elliptic Curve Cryptography for Future Secure Web
Transaction, 2007.



37

“The National Security Agency is
advising US agencies and businesses
to prepare for a time in the
not-too-distant future when the
cryptography protecting virtually all
e-mail, medical and financial records,
and online transactions is rendered
obsolete by quantum computing”
Source: Ars Technica, August 21, 2015

D-Wave System Chip with Quantum Properties

SecureRF’s Cryptography Methods

are quantum-resistant to all known attacks



38

Quantum Resistance

I Two important quantum methods: Shor’s Algorithm and Grover’s
Search Algorithm

I Shor: Breaks ECC, RSA, and DH by quickly factoring or solving the
discrete log problem

I Requires the method’s math be Finite, Cyclic, and Commutative
I GTC is neither Cyclic nor Commutative, and the underlying group is

Infinite, so Shor does not apply

I Grover’s Search Algorithm reduces the security level (e.g. AES-128
becomes 64-bit secure)

I Doubling the security of GTC requires doubling the key size which only
doubles the runtime



39

Commercial Use Cases

I Anti-counterfeiting
Example: an industrial partner protecting replacement parts

I Credentialing
Example: a faster, quantum-resistant replacement for a CAC Card

I Fast, Quantum-Resistant Secure Boot
Example: a RISC-V processor that validates its firmware before it
runs

I Mutual Authentication of IoT Devices

I Chips that can prove their identity without secure databases



40

Demonstration
Ironwood versus ECDH speedtest on a Microsemi Smartfusion2

I 182µs versus 370ms
per authentication

I ARM: 100MHz,
Fabric: 50Mhz



41

Conclusions

I GTC enables novel Public Key methods suitable for low-power,
passive, and otherwise constrained devices

I Significantly faster than ECC, RSA, and DH

I Performance scales linearly (as opposed to quadratically) as security
increases

I The underlying core technology (E -Multiplication) can also be used
to form block cipher, hash, and prng

I Algorithms are quantum resistant

I Has a small footprint for hardware and software implementations

We believe GTC has a big future in the IoT universe.



Thank You!
Any Questions? SecureRF Corporation

100 Beard Sawmill Rd, Suite 350
Shelton, CT 06484

(203) 227-3151

Derek Atkins, CTO (datkins@securerf.com)

Copyright c©2017. SecureRF Corporation. All Rights Reserved. All trademarks and service marks, which may be registered
in certain jurisdictions, belong to SecureRF Corporation or the holder or holders of such marks.


