
© KoolSpan. All rights reserved. 1

Smartphone
Keystores
2017 Edition
ICMC 2017 - Session G22a

May 2017
Bill Supernor, CTO, KoolSpan

© KoolSpan. All rights reserved. 2

• What is a keystore?
•  Points of comparison

•  Platforms
•  iOS

•  Android

•  Windows Phone

•  BB10

• Other options

Smartphone Keystores

© KoolSpan. All rights reserved. 3

•  The place in the phone where cryptographic keys and (sometimes)
other critical secrets are stored.

•  Examples:
•  PKCS#12 files
•  Encrypted databases of key blobs
•  Smartcards/PIV cards
•  Secure microSD devices
•  Other hardware security modules (HSM)

•  What’s in there?
•  Asymmetric keypairs
•  Symmetric keys
•  Passwords
•  Other secret stuff

What is a keystore?

© KoolSpan. All rights reserved. 4

From the “Ten Immutable Laws Of Security (Version 2.0)”
(By Scott Culp, Microsoft, 2000)

Law #3: If a bad guy has unrestricted physical access
to your computer, it's not your computer anymore

Law #7: Encrypted data is only as secure as its
decryption key.

© KoolSpan. All rights reserved. 5

•  Typical Keystore functions
•  Add/remove key

•  Find key

•  Export key

•  “Use” key in a crypto operation
•  Hopefully by reference - and not by export

•  Enforce Access Control Lists (ACLs) on certain functions

What can a keystore do?

© KoolSpan. All rights reserved. 6

•  “Standard” interfaces are rare
•  Minimal true cross-platform APIs

•  Standard within a specific platform

•  Cross-platform development always done with an isolation layer

•  Java Cryptography Architecture (JCA) and Android APIs

•  Apple Keychain

•  BlackBerry Certificate Manager API

• MS CAPI

•  PKCS11/cryptoki

How to access - Keystore APIs

© KoolSpan. All rights reserved. 7

•  A file or database in the file system...hopefully encrypted
•  A “protected” part of the device

•  Trusted Execution Environment (TEE)

•  ARM TrustZone

•  Trusted Platform Module (TPM)

•  Dedicated processor

•  A secure element
•  SIM/UICC card?

•  NFC secure element?

•  Not likely....

Where is the keystore?

© KoolSpan. All rights reserved. 8

•  User, OS, and hardware level defenses
•  User

•  “What you know” - User PIN/Password/Pattern

•  “What you are” - Fingerprint

•  Hardware/OS defenses
•  OS Secure boot

•  Integrity checks - software and hardware

How is the keystore protected?

© KoolSpan. All rights reserved. 9

•  Device unlocked
• Within x time of user authentication to device

•  Right after boot

•  Device locked
•  Some apps require access to keys while device is sleeping/locked

When are the keys accessible?

© KoolSpan. All rights reserved. 10

• One user/multiple users
• One app/multiple apps

• One vendor/cross-vendor

Who can access the keys?

© KoolSpan. All rights reserved. 11

It’s complicated...

OK...so how do they compare?

vs.

© KoolSpan. All rights reserved. 12

•  Android (http://developer.android.com/about/dashboards/index.html)

•  iOS (https://developer.apple.com/support/app-store/)

Features vary by version - Fragmentation

Nougat v7+7.1 7.1% (+7.1%)
Marshmallow v6 31.2% (+23.7%)

Lollipop v5+5.1 32.0% (-3.6%)

KitKat v4.4 18.8% (-13.7%)

Jelly Bean v4.3 1.3% (-1.6%)

Everything else... 9.6% (-11.9%)

10.x 79% (+79%)
9.x 16% (-68%)
Everything else... 5%

© KoolSpan. All rights reserved. 13

•  Keystore - App-isolated PKI keypairs
•  KeyChain - Special instance of Keystore with System global

visibility
•  KeyMaster - Hardware Abstraction Layer (HAL) for encryption of keys
•  Keys stored in flat files, highlighting user-and-app-level KeyChain

isolation
•  /data/misc/keystore/user_X/AppUID_keyname, as before (where X is the

Android user ID, starting with 0 for the primary user)
•  Encryption of key files depends on Android version and TEE availability

•  If keystore not hardware backed, lockscreen password used to derive
keys for protecting keystore with PBKDF

•  Beyond this...it is version dependent
•  Most OEMs use ARM TrustZone-based keystores - many on QSEE or

Trustonic TEE

Android Keystore

© KoolSpan. All rights reserved. 14

•  Android J (v4.1, 4.2, 4.3)

•  AndroidKeyStore Provider - create/import/store/use(sign+verify)
private RSA keys, not usable by other apps

•  isBoundKeyType method - allows applications to confirm that
system-wide keys are bound to a hardware root of trust for the device
(Subsequently deprecated in Android M)

•  As of 4.2: default SecureRandom provider is OpenSSL.

•  Android K (v4.4)

•  AndroidKeyStore adds support for EC keys + DSA/ECDSA
•  SecretKeyFactory with PBKDF2WithHmacSHA1 uses all available

bits of Unicode passphrase per PKCS #5.

•  Android L (v5.x)

•  TLS with AES-GCM

Android - The Older 52%

© KoolSpan. All rights reserved. 15

• Major revisions to Keystore + Keymaster
•  Support for symmetric keys + primitives

•  Access control system for specific users, apps, time ranges

•  Key usage restrictions - encr/decr, sign/verify, block mode, padding
- stored with key and mandatory for usage in accordance with
parms

•  Can require authentication on per-key basis and dictate
auth validity duration

•  Supports complicated crypto operations of potentially
arbitrary size with begin/update/finish pattern

Marshmallow/v6 (31.2%)

© KoolSpan. All rights reserved. 16

•  Relevant core OS hardening:
•  Verified Boot now strictly enforced to prevent compromised devices

from booting - and blocks access to the keystore.
•  Hardware-backed keystore mandatory (TEE or better)
•  User and MDM-installed root CA’s no longer globally trusted by

default...APIs added to enable trust.
•  Cross-OEM-standardized trusted CAs

•  RNG changes:
•  SHA1PRNG algorithm and “Crypto” provider deprecated

•  SecureRandom.getInstance("SHA1PRNG", "Crypto") Will only
work for M and below

•  If SHA1PRNG is requested without explicit Provider, OS will return an
instance of OpenSSLRandom.

Nougat/v7 - This year’s model... (7.1%)

© KoolSpan. All rights reserved. 17

•  Android Keystore protected by device lock
•  Changing screen lock type (None/PIN/Pattern/PW) wipes keystore in

older devices
•  The bug: https://issuetracker.google.com/issues/36983155

•  (Or for detailed analysis:
https://doridori.github.io/android-security-the-forgetful-keystore/)

•  Android J, K, and some M: Any lock screen type transition wipes
keystore without warning

•  Newer versions of Android survive most transitions or warn the user if
the particular transition will wipe the keys.

•  Restricted access to public keys in Android M/v6.0
•  ACL rules set for private key also get applied to public keys

(Workaround: extract/store public key material outside keystore)

Android: Gotchas

© KoolSpan. All rights reserved. 18

•  Can store passwords, keys, certificates, and blobs
•  With one exception, does not appear to restrict key extraction by apps

•  Implemented as a single SQLite database stored on the file
system, owned by securityd

•  Key Item Access Control Lists (ACL)
•  kSecAttrAccessGroup - WHAT app can access key

•  Short version: Keychain items can only be shared between apps from the
same developer/vendor

•  kSecAttrAccessible - WHEN can the key be accessed
•  kSecAttrAccessControl - What type of authentication is needed

•  ACL decisions are made in the Secure Enclave Processor
•  Keychains can be collected and managed in groupings called

“Keybags”

iOS Keychain

© KoolSpan. All rights reserved. 19

•  iPhone 5s and later
•  A distinct processor + kernel inside the SoC for TouchID and KeyStore
•  Distinct from the main CPU’s ARM TrustZone (which appears to be dedicated to

Kernel Patch Protection)
•  Stores its own data in device storage but uniquely keyed and unknown to ANYONE
•  May be used to protect KeyChain items via TouchID or device password

•  Can generate/store/use unexportable EC P256 keys
•  Enables protected calls to SecKeyRawSign() and SecKeyRawVerify()
•  Preservation of the associated public key left as an exercise for the student...

iOS Secure Enclave Processor (SEP)

From Keychain and Authentication with Touch ID - WWDC14

© KoolSpan. All rights reserved. 20

Data Protection Availability
kSecAttrAccessibleAfterFirstUnlock After user enters passcode for

1st time after reboot
(recommended for background
services)

kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly Same as above...but cannot be
backed up to iCloud and then
restored to a different device

kSecAttrAccessibleAlways Key accessible anytime after
boot (deprecated in iOS 9)

kSecAttrAccessibleAlwaysThisDeviceOnly Same as above...but...
kSecAttrAccessibleWhenUnlocked DEFAULT mode. Key accessible

when device unlocked
kSecAttrAccessibleWhenUnlockedThisDeviceOnly Same as above...but...
kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly Added in iOS 8. Key accessible

when device unlocked, but
password MUST exist. NEVER
backed-up.

kSecAttrAccessible ACL’s control when a key can be accessed

iOS Keychain protection attributes

© KoolSpan. All rights reserved. 21

•  UID - 256-bit Unique ID/key - generated in SEP at Mfg
•  Used in file system encryption key heirarchy

•  GID - 256-bit Group ID/key - inserted in SEP at Mfg
•  Common across all devices in a processor family
•  Firmware encryption

•  iOS devices use a feature called Effaceable Storage to securely
erase critical keys from NAND
•  Bypasses NAND wear-leveling to directly address and erase a small

number of blocks at a very low level

•  SEP includes a “true hardware random number generator based
on multiple ring oscillators post processed with CTR_DRBG”

•  All other cryptographic keys are created in the OS using an
algorithm based on CTR_DRBG.

iOS Roots of Trust and RNG

© KoolSpan. All rights reserved. 22

•  Lower-level methods with very granular attribute control
•  SecItemAdd to add an item to a keychain
•  SecItemUpdate to modify an existing keychain item
•  SecItemCopyMatching to find a keychain item and extract

information from it
•  SecItemDelete to delete an item

•  Minimal crypto functions that are actually performed inside the
keystore
•  Keys have to come up to app space

•  iOS 10 CryptoTokenKit API adds native support for Smart
Cards and USB crypto tokens
•  iOS 10 also added APIs and algorithms for asymmetric cryptographic

operations which are now unified across iOS and macOS

APIs

© KoolSpan. All rights reserved. 23

•  Biometric user authentication
•  Hardware sensor and Secure Enclave get pre-shared secret at Mfg time
•  Provides further granularity to key access and bind a credential more

closely to Touch ID
•  Used with attribute kSecAttrAccessControl

iOS TouchId

Attribute Control
UserPresence Require TouchID and fallback to passcode

TouchIDAny TouchId with no fallback

TouchIDCurrentSet Only allows access if enrolled TouchID has not changed since item stored

Someone with device passcode cannot login, add finger to TouchID, and then
access credential

DevicePasscode Passcode only

ApplicationPassword Password from App required to decrypt credential

Password entered by user or perhaps from a live server

PrivateKeyUsage Leverage asymmetric private key that never leaves the KeyStore

EC P256, supporting sign and verify

© KoolSpan. All rights reserved. 24

• Watch out for iCloud Keychain
•  Some passwords/keys can be shared across devices
•  Set attribute kSecAttrSynchronizable to false to prevent sync or

use ...ThisDeviceOnly ACL

•  Keys cannot be shared between apps from different
vendors
•  Complications for provisioning derived credentials for use by apps

from multiple vendors

•  iPhone “memory pressure” issue - key access denied
(https://forums.developer.apple.com/message/185130)

•  Items written to Keychain are not removed when app
uninstalled

iOS other tidbits/gotchas

© KoolSpan. All rights reserved. 25

•  Two more or less distinct keystores
•  Credential Locker

•  Apps can only access their own credentials
•  Credentials “roam” between a user’s devices along with the user Microsoft

account

•  Virtual Smart Card
•  Keys are bound to the hardware and can only be accessed when user PIN is

provided
•  Potentially more “traditional” Derived Credential approach
•  Built on top of TPM

•  TPM (Trusted Platform Module) mandatory in Windows Phone 8.1 and
Windows 10 Mobile

•  Protect cryptographic calculations, virtual smart cards, and certificates

•  Native support for biometrics

Windows Phone/Mobile Keystore

© KoolSpan. All rights reserved. 26

•  Keys managed by BlackBerry Certificate Manager API
•  Keystore is implemented with ARM TrustZone

•  Supports PKI (with caveats) and passwords

•  Permits binding of items to User, App, or Enterprise (aka, BES)

•  Allows blocking export/backup of private keys

•  Appears to support user password prompting to unlock keystore

•  BUT...the PKI keystore is only available to native Email,
VPN, Browser apps
•  There is no native PKI keystore capability for 3rd party vendors

•  Right now only supports secure password storage

BlackBerry 10 Keystore

© KoolSpan. All rights reserved. 27

•  Which keystores use or provide FIPS 140-2 validated crypto?
•  Windows Phone - Definitely

•  Apple - Definitely

•  Android - It depends... (Samsung flagships - probably)

•  BlackBerry 10 - Definitely

•  Caveat #1: All are FIPS 140-2 Level 1

•  Caveat #2: Lots of OpenSSL deployed with mobile OS’s...some
probably FIPS. (Samsung using BoringSSL fork)

•  Caveat #3: Exceedingly difficult to determine if crypto used by
OS is running in FIPS Mode, as APIs are buried.

Keystores and FIPS

© KoolSpan. All rights reserved. 28

•  What if FIPS 140-2 Level 1 is not good enough?
•  Smart cards?

•  Tethered or Bluetooth sleds are cumbersome
•  Device-tailored cases/sleeves cannot keep up with device shape changes
•  NFC-based smartcards would be a great option

•  Secure microSD devices
•  PKI Smart Card in a microSD form factor (Such as GoTrust)

•  FIPS 140-2 Level 3
•  Provide PKCS#11 or full ISO 7816 APDU interfaces

•  Supported on iOS and Android
•  iOS requires adapters...which brings us back to smart card challenges
•  Overall: a potential solution when higher grade crypto is essential

Other options

© KoolSpan. All rights reserved. 29

• Market fragmentation makes availability of key features
unpredictable

•  Different platforms have different strengths

•  Disparate API’s/features makes writing common key
management a challenge

• Mobile keystores continue to evolve in a generally positive
direction
•  Improving in strength and features

Parting thoughts...

© KoolSpan. All rights reserved. 30

•  https://nelenkov.blogspot.com/2015/06/keystore-redesign-in-android-
m.html

•  http://www.samsung.com/hk_en/business-images/insights/2015/
Android_security_maximized_by_Samsung_KNOX_0315_online-0.pdf

•  https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-
The-Secure-Enclave-Processor.pdf

•  https://www.apple.com/business/docs/iOS_Security_Guide.pdf
•  http://us.blackberry.com/content/dam/blackBerry/pdf/business/english/

BlackBerry-Security-Brochure.pdf
•  http://video.ch9.ms/sessions/teched/na/2014/WIN-B220.pptx (TechEd -

Windows Phone 8.1 Security for Developers)
•  https://www.cs.ru.nl/E.Poll/papers/AndroidSecureStorage.pdf (Analysis of

Secure Key Storage Solutions on Android)
•  https://developer.android.com/training/articles/keystore.html

Awesome references

© KoolSpan. All rights reserved. 31

Thank you!

Contact: bsupernor@koolspan.com

