

ICMC 2015

Peter Helderman UL Transaction Security

© 2011 Underwriters Laboratories Inc.

TRANSACTION SECURITY

300 EXPERTS

LOCAL EMPLOYEES IN **34** COUNTRIES MOBILE
 PAYMENTS
 TRANSIT
 DATA SECURITY

INDEPENDENT
 MARKET LEADER
 GLOBAL REACH

PARTICIPATING IN >30 INDUSTRY ORGANIZATIONS

ICMC 2015

"We have EMV.... ... why do we need tokenization ?"

From Magstripe...

Merchant

But EMV solves only part of the problem !

Tokenization explained

Beware the terminology!

"Tokenization" and "Tokens" have many different **meanings** in this industry! We will use the **EMVCo** terminology.

What is a Token?

Token Cryptogram:

- A cryptogram generated using the Payment Token and additional transaction data to create a transaction-unique value.
- Similar to the Application Cryptogram in EMV
- Can be a dynamic CVC value

Token Cryptogram

ICMC 2015

Tokenization reduces impact of fraud

Token domain

In order to prevent cross-channel and cross-merchant fraud, it is possible to restrict the usage of tokens only to specific domains.

Token assurance level

Not all tokens are equally strong...

- Before token issuance, identification and validation (ID &V) methods can be used.
- Depending on the level of authentication, the token may have a higher **assurance**.

Card issuer authentication (SMS, 3DS, ...)

Risk scoring using data (IP, device ID, ...)

\$0 authorization, CVC2, AVS checks

No ID&V performed

How strong is the binding between cardholder and token?

Tokenization roles

Tokenization examples

• Acquirer Level

• Payment Network Level

Cloud Based Mobile Payments

Acquirer Level Tokenization

Encryption and Tokenization combined

Side Step: Payment Card Evolution

ICMC 2015

Side Step: Payment Card Evolution

Cloud Based Mobile Payments Provisioning a Card

5. Token/Key generation

Cloud Based Mobile Payments Payment

Cloud Based Mobile Payments MDES and VDEP

Confidentia 20 Internal use only

Conclusions

enodgi

Tokens allow for Asset Devaluation

PAN (EMVco) Token vs. Token Cryptogram

Protecting data at rest, eCommerce

Test, econtinuerce

ICMC 2015

ApplePay uses PAN tokenizantion

Peter Helderman

CBMP use Token Cryptograms

oryprograms

Thank You

Peter Helderman Principal Consultant UL Transaction Security peter.helderman@ul.com

Challenges

The idea of tokenization is to allow transactions to be performed using the **current processing rails**, without changes to all existing routing mechanisms.

However, there are important **impacts** that need to be considered:

- Handling of clearing files with tokenized data
- Pre-authorization followed by payment with physical card [e.g. hotel]
- Card product differentiators and related interchange fees [e.g. MasterCard Black, Visa Platinum]
- Card-linked benefits

 [e.g. points, mileage, insurance]
- Recurring payments and partial shipment
- Refunds and cancellation flows
- Handling chargebacks and disputes

