
Entropy Estimation Methods for SW
Environments in KCMVP

NSR: Seogchung Seo, Sangwoon Jang
Kookmin University: Yewon Kim, Yongjin Yeom

Contents
 Brief Introduction to KCMVP

 Entropy Estimation Methods for SW Environments in

KCMVP
 Entropy Analysis Framework in KCMVP
 Correlation-based Entropy Analysis
 Experimental Results

 Q&A

Brief Introduction to KCMVP (1/3)

Brief Introduction to KCMVP (2/3)
 Approved Algorithms in KCMVP

LEA: A 128-bit Block Cipher for Fast Encryption on Common Processors, WISA 2013, LNCS 8267, 2014.
HIGHT: A New Block Cipher Suitable for Low-Resource Device, CHES 2006, LNCS 4249, 2006.

Brief Introduction to KCMVP (3/3)
 Current Validation Statistics in KCMVP
 More than 160 modules have been validated

 SW modules are dominant in the validation list
 Almost security level 1

 Preferred Environments
 Windows > Linux/Unix > Java > Mobile(Android, iOS)

 Most Frequently used approved algorithms in KCMVP
 Symmetric-key > Hash > MAC > RBG > Public-key

encryption > Digital Signature > KE

Why is Entropy Analysis important?
 Modern Cryptosystems Depends on the Security of

Underlying Key
 Security of Key Depends on the Seed Value in DRBG

Crypto
Keys,

params
IV, seed,
nonce

Pass
-word …

Noise sources for RBG seed

Not enough entropy in collected noise sources
  weakness in whole security systems

Entropy Estimation in S/W Environments
 Characteristics of Noise Source in SW Environments
 Biased entropy distribution

 Difficult to expect uniform distribution or IID

 Dependence among bytes in a source
 Same data can be repeated

 Sample size btw several bytes and several hundreds bytes
 Depends on how to collect and types of OSs

 Collection interval affects the entropy

 Generation rate is not consistent
 Ex) mouse events, key board events and so on

Current methods are suitable for HW noise sources.
Thus, entropy evaluation method for SW noise sources is necessary!

Entropy Analysis Framework
 Overall Structure of Entropy Analysis Framework in KCMVP

Entropy Analysis Framework

Fast feedback to vendors

Providing enhanced accuracy

Correlation-based
entropy analysis

Determining
entropy noise

Collecting noise
samples

Statistical entropy
analysis

Providing consistent
noise collection means

Under progress of TTA standardization (“Entropy Evaluation Algorithms for Noise Sources in Software Environments”)

Correlation-based Entropy Analysis
 Aiming at
 fast, but moderately accurate entropy analysis for rapid feedback
 Reducing efforts for gathering noise samples

 At least, 256 samples required for a noise source

 Format of noise sample

… # of samples

of byte columns

Correlation-based Entropy Analysis
 Process of CEA
 Distribution-based filtering

 Byte sample distribution, 0/1’s distribution

 Byte-oriented entropy analysis
 Maximum entropy is 8-bit on a byte column
 Applying Shannon, Min entropy
 Can be extended to use other statistical entropy analysis

 Pearson correlation-based entropy reassessment

Byte-oriented
Entropy analysis

Distribution-
based Filtering

Correlation
Computation
among bytes

Entropy
Reassessment

• Byte value distribution
• 0/1’s distribution

• Shannon entropy
• Min entropy

• Computing Pearson
correlation among byte columns

• Entropy reassessment

Correlation-based Entropy Analysis
 Distribution-based Filtering
 Byte values: 8, 16, 32, 64, 128
 0/1’s values:

 Byte-oriented Entropy Analysis

 Individual entropy computation
 Computing Shannon entropy
 ∑ −𝑃𝑖 log2 𝑃𝑖255

𝑖=0

 Computing Min entropy
 −log2 max 𝑝0, … , 𝑝255

 Can be extended to other entropy
computation methods

Sample

0-th
byte

1-th
byte

2-th
byte

3-th
byte

 4-th
byte

0 0F 01 32 6C B7

1 F2 02 F4 7A F2

2 CC 01 AB 4F 39

… … … … D3 73

255 EF 02 97 46 96

#Dist 128 5 150 154 180

Sample#
0-th
byte

2-th
byte

3-th
byte

 4-th
byte

0 0F 32 6C B7

1 F2 F4 7A F2

2 CC AB 4F 39

… … … D3 73

255 EF 97 46 96

#Dist 128 150 154 180

Entropy e0 e1 e2 e3

Correlation-based Entropy Analysis
 Computing Correlation among Byte Columns
 |cora,b| ≤ 1, correlation btw a-th and b-th byte columns, cora,a = 0

𝑐𝑐𝑐𝑎,𝑏 =
∑ (𝐵𝑎,𝑖 − 𝐵𝑎)(𝐵𝑏,𝑖 − 𝐵𝑏)255
𝑖=0

∑ (𝐵𝑎,𝑖 − 𝐵𝑎)2× ∑ (𝐵𝑏,𝑖 − 𝐵𝑏)2255
𝑖=0

255
𝑖=0

cor1,1 cor1,2 cor1,3 cor1,4

cor2,1 cor2,2 cor2,3 cor2,4

cor3,1 cor3,2 cor3,3 cor3,4

cor4,1 cor4,2 cor4,3 cor4,4

k X k correlation table
(in this case, 4 X 4)

B1 B2 B3 B4

Correlation-based Entropy Analysis
 Entropy Reassessment
 Basic Idea

 Total entropy needs to be bigger than individual byte column’s entropy

 General equation

𝑒1′ = 𝑒1 1 − 1
4 𝑐𝑐𝑐12 + 𝑐𝑐𝑐13|+|𝑐𝑐𝑐14

𝑒2′ = 𝑒2 1 − 1
4 𝑐𝑐𝑐21 + 𝑐𝑐𝑐23|+|𝑐𝑐𝑐24

𝑒3′ = 𝑒3 1 − 1
4 𝑐𝑐𝑐31 + 𝑐𝑐𝑐32|+|𝑐𝑐𝑐34

𝑒4′ = 𝑒4 1 − 1
4 𝑐𝑐𝑐41 + 𝑐𝑐𝑐42|+|𝑐𝑐𝑐43

 Entropy reassessment example (k=4)

� 𝑒𝑖
𝑘

𝑖=0
≥ 𝑒𝑗 ,𝑤𝑤𝑤𝑤𝑤 0 ≤ 𝑗 ≤ 𝑘

𝑒𝑖′ = 𝑒𝑖 1 − 1
𝑘 ∑ 𝑐𝑖,𝑗𝑘

𝑗=0 𝑤𝑤𝑤𝑤𝑤 𝑖 ≠ 𝑗 𝑎𝑎𝑎 𝑘 𝑖𝑖 #𝑜𝑜 𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Reassessed entropy = original entropy x Reducing factor

Correlation-based Entropy Analysis
 Developed SW – Entropy Estimator V0.1

Correlation-based Entropy Analysis
 Experimental Result
 Linux Kernel 2.6 64-bit

Without entropy reassessment Without entropy assessment

Correlation-based entropy reassessment prevents entropy overestimation!

0-th byte column 14-th byte column 1-th byte column 15-th byte column

Kookmin University ICMC 2017

Standardization of Entropy Evaluation

Algorithms for Noise Sources in Software

Environments and its Application

2017.05.17.(Wed.)

Kookmin University

1/33 Kookmin University ICMC 2017

 Abstract

 Standardization : software noise source evaluation method

 Evaluation method of software noise source

Contents

2/33 Kookmin University ICMC 2017

Abstract

3/33 Kookmin University ICMC 2017

 What is RBG(Random Bit Generator)?
 RGB generates a random bit for the cryptographic systems.

 Ideally, the generated random bit is expected to be the result of 'coin toss'.

 It is an essential element in the operation of the cryptographic systems and the
cryptographic modules.

 Required properties: unpredictability, non-bias/uniformity, bit-to-bit independence

 Vulnerability of Entropy Collection in RBG
 If RBG do not collect enough entropy, the output of a random number is predictable.

Abstract

RBG

Entropy source Output of a Random Sequence

Entropy Collection Entropy
Accumulation /

Seed Generation

Random Number
Generation Algorithm

0101010101110101010⋯

• Collect entropy provided

by a noise source.

• Manage the collected entropy.

• Generate a seed.

• Use a standardized

cryptographic algorithm.

4/33 Kookmin University ICMC 2017

 Primary Documents and Standards for Entropy Evaluation Methods
 BSI AIS.31

• Statistical tests for the entropy sources

• a basis for validation by CC(Common Criteria for Information Technology Security Evaluation)

 NIST SP 800-90B (2nd Draft)
• Design and testing requirements for the entropy sources

• a basis for validation by CMVP(Cryptographic Module Validation Program)

 ISO/IEC 20543 (1st CD)

• International standard evaluation methodology for entropy

Abstract

[Relationship between ISO/IEC 20543 and the documents on the evaluation of RNG]

Hardware Nosie Source-Based Entropy Evaluation Method!

5/33 Kookmin University ICMC 2017

 In Korea, software cryptographic modules
are mainly developed.

 Software noise sources are collected to
generate random numbers.

 Characteristics of software noise source
 The S/W noise source depends on the operating system.

 It is difficult to expect that the S/W noise source has the uniform distribution or it is IID.

 The sample size of the S/W noise source is several bytes to several hundred bytes, but the
collected entropy is low.

 It is difficult to collect the S/W noise source of data size required by primary entropy
evaluation methods.

 The characteristic of a S/W noise source can be greatly changed according to the collection
interval of the S/W noise source.

Abstract

S/W Cryptographic
modules

H/W Cryptographic
modules

95 2

Reference : http://www.nis.go.kr/AF/1_7_3_3/list.do

[The list of verified cryptographic modules by KCMP]

(IID : Independent and Identically Distributed)

It is not desirable to apply the entropy evaluation method that is suitable for the
hardware noise source directly to the software noise source.
An entropy evaluation method suitable for software noise sources is needed!

6/33 Kookmin University ICMC 2017

Standardization
: software noise source evaluation method

7/33 Kookmin University ICMC 2017

 It is Korean standard and is registered in TTA(Telecommunications Technology

Association).

 Title

 : Entropy Evaluation Algorithms for Noise Sources in Software Environments

 Purpose

: This standard specifies evaluation and statistical test algorithms for DRBG in software

 environments.

 Summary

: This standard specifies resource collecting methods, statistical test algorithms and entropy

 estimate algorithms in software environments.

 TTA Homepage(eng) : http://www.tta.or.kr/eng/index.jsp

Standardization : software noise source evaluation method

8/33 Kookmin University ICMC 2017

 Contents of this TTA standard

TTA standard: Entropy Evaluation Algorithms for Noise Sources in S/W Environments

1. Statistical test algorithm

 Statistical test algorithm

 Health test algorithm

2. Entropy estimate algorithm based on probability theory and information theory

 Min-entropy estimate algorithm

 Shannon-entropy estimate algorithm

3. Entropy estimate algorithm based on byte correlation

4. Test vector

9/33 Kookmin University ICMC 2017

TTA standard: Entropy Evaluation Algorithms for Noise Sources in S/W Environments

 Statistical test algorithm
 T1 ~ T5 of Class P1 in AIS.31 were selected for statistical test using small data.

 Statistical test algorithms are the generalized algorithms that applied P-value

to T1 ~ T5.

 So variable evaluation criterion can be applied these statistical test algorithms.

 Health test algorithm
 Health test algorithms are the algorithms that generalized Repetition Count Test and

Adaptive Proportion Test in SP 800-90B.

1. Statistical Test Algorithm

10/33 Kookmin University ICMC 2017

TTA standard: Entropy Evaluation Algorithms for Noise Sources in S/W Environments

 Min-entropy estimate algorithm
 The most common value estimate, the collision estimate, the Markov estimate and

the compression estimate of entropy estimation for Non-IID data in SP 900-90B were

selected, since the software noise source will be Non-IID.

 Min-entropy estimate algorithms are the algorithms that generalized the selected

estimate tests.

 Shannon-entropy estimate algorithm
 There are two types of Shannon-entropy estimate algorithms.

 One is the generalized T8 of Class P2 in AIS.31.

 The other is the Shannon-entropy estimate test based on mutual information.
 Reference : Young-Sik Kim, Yongjin Yeom, and Hee Bong Choi, “Online Test Based on

 Mutual Information for True Random Number Generators”, J. Korean Math.

 Soc. 50, No. 4, 2013.

2. Entropy estimate algorithm based on probability theory and information theory

11/33 Kookmin University ICMC 2017

Evaluation method of software noise source

12/33 Kookmin University ICMC 2017

Evaluation method of software noise source
 Subject : GetSystemTime, GetTickCount

Windows 7(32bits) Noise Source Sample Size Function

Time-related
noise source

GetSystemTime 16 GetSystemTime();

GetTickCount 4 GetTickCount();

QueryPerformanceCounter 8 QueryPerformanceCounter();

User-related
noise source GetCursorPos 8 GetCursorPos();

OS-related
Noise source

GetCurrentThreadId 4 GetCurrentThreadID();

GetForegroundWindow 4 GetForegroundWindow();

GetIcmpStatistics 104 GetIcmpStatistics();

GetIpStatistics 92 GetIpStatistics();

GetPerformanceInfo 56 GetPerformanceInfo

GetProcessHeap 4 GetProcessHeap();

GetTcpStatistics 60 GetTcpStatistics();

GetUdpStatistics 20 GetUdpStatistics();

GlobalMemoryStatusEx 64 GlobalMemoryStatusEx();

HeapList 32 Heap32ListFirst(); Heap32ListNext();

ProcessList 1728 Process32First(); Process32Next();

ThreadList 10248 Thread32First(); Thread32Next();

13/33 Kookmin University ICMC 2017

Evaluation method of software noise source
 Subject : GetSystemTime, GetTickCount

 Time-related noise sources in Windows OS

 Evaluation Scenario

1. Theoretical Analysis

 Propose the evaluation method for each noise source.

2. Experimental Analysis

 Validate the proposed evaluation method and propose the collection method.

14/33 Kookmin University ICMC 2017

 A heuristic analysis of time-related noise sources in the Cryptographic Module

Validation Implementation(CMVP IG)[1] provided by NIST

 Representation of time = hh : mm : ss.zzz
 zzz : The decimal fraction of a second measured up to the third decimal point(ms, milliseconds).

 The most variable value.

 The estimated entropy of time-related noise source is dependent on the frequency of

the measurement.
 If measure at different frequency each time,

 The number of the zzz values : 1,000  approximately 10 bits of entropy

 But it is difficult to measure the time at different frequencies each time.

 If measure at a frequency of about 0.5 seconds each time,

 The number of the values made out of the second and third “z” : 100

 The first z has some randomness in it as well.

 The variability of the zzz values is similar to having 128.  7 bits of entropy

 The CMVP may even accept a claim of 8 bits of entropy in this case if a slightly more

sophisticated argument is made to support such a claim.

Theoretical Analysis – Heuristic Analysis in CMVP IG

[1] Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program (Update: 2016.08.01.)

15/33 Kookmin University ICMC 2017

 Scenarios for Theoretical Analysis

1. Analyze the structure and characteristics of each noise source.

• Refer to Microsoft Developer Network(MSDN) provided by Microsoft.

2. Analyze heuristically the entropy of each noise source.

• Use conservatively the heuristic analysis in CMVP IG.

 Due to the characteristics of software noise source, the characteristic of a software

noise source can be greatly changed according to the collection interval.

Theoretical Analysis - GetSystemTime, GetTickCount

The analysis of each noise source is performed considering the collection interval

as follows.

 Case of collecting at regular intervals

 Case of collecting at random intervals within a given collection interval

16/33 Kookmin University ICMC 2017

1. Analyze the structure and characteristics of each noise source.

 GetSystemTime is the current system date and time.

 The System time is expressed in Coordinated Universal Time(UTC).

 Sample Size : 16 bytes

 Collecting function : GetSystemTime()

 Components of GetSystemTime

 The Most variable component : Milliseconds(ms)

 The heuristic analysis is focused on milliseconds(ms).

Theoretical Analysis - GetSystemTime

Size Component
2 bytes Year (1601~30827)

2 bytes Month (1~12)

2 bytes Day of Week (0~6)

2 bytes Day (1~31)

2 bytes Hour (0~23)

2 bytes Minute (0~59)

2 bytes Second (0~59)

2 bytes Milliseconds (0~999)

17/33 Kookmin University ICMC 2017

2. Analyze heuristically the entropy of each noise source.

 The time is represented as hh:mm:ss.zzz that is the same representation as CMVP IG.
 The heuristic analysis in CMVP IG is conservatively used to estimate entropy.

1) Case of collecting at regular intervals
• The number of the zzz values : 1

 Ex) When collecting at 160 ms intervals, always collect zzz value increased by 160.

• Estimated entropy : 0 bit of entropy

2) Case of collecting at random intervals within a given collection interval

Theoretical Analysis - GetSystemTime

Given collection interval Estimated entropy

~ 9 ms 0 bit of entropy

10 ~ 99 ms 3 bits of entropy

100 ms ~ 6 bits of entropy

Ex) When the given collection interval is 20 ms, collect at random intervals within 20 ms.

 The number of the values made out of the third : 10

 We consider that there is no randomness in the first and second z. (Conservative perspective more than CMVP IG)

 The variability of the zzz values is similar to having 10.  3 bits of entropy

18/33 Kookmin University ICMC 2017

1. Analyze the structure and characteristics of each noise source.

 GetTickCount is the number of milliseconds that have elapsed since the system was started,

up to 49.7 days.

 Sample Size : 4 bytes

 Collecting function : GetTickCount()

 The resolution of GetTickCount() : typically the range of 10 ms to 16 ms

 That is, if GetTickCount() is called after a time in the range of 10 ms to 16 ms,

GetTickCount is increased by that time.

 The Most variable Byte : LSB(1 byte)

 The heuristic analysis is focused on LSB(1 byte).

Theoretical Analysis - GetTickCount

19/33 Kookmin University ICMC 2017

Given collection interval Estimated entropy

~ 31 ms 0 bit of entropy

32 ~ 63 ms 1 bit of entropy

64 ~ 127 ms 2 bits of entropy

128 ~ 255 ms 3 bits of entropy

256 ms ~ 4 bits of entropy

2. Analyze heuristically the entropy of each noise source.

 Assume that GetTickCount is increased by 16 after every 16ms. (Fix the resolution)
 The heuristic analysis in CMVP IG is conservatively used to estimate entropy.

1) Case of collecting at regular intervals
• The number of the LSB(1 byte) values : 1

• Estimated entropy : 0 bit of entropy

2) Case of collecting at random intervals within a given collection interval

Theoretical Analysis - GetTickCount

Ex) When the given collection interval is 160 ms, collect at random intervals within 160 ms.

 The number of the LSB(1 byte) values : 10

 Estimated entropy : 3 bit of entropy

20/33 Kookmin University ICMC 2017

2. Analyze heuristically the entropy of each noise source.

 Assume that GetTickCount is increased by that time after a random time in the range of 10 ms

to 16 ms.
 The heuristic analysis in CMVP IG is conservatively used to estimate entropy.

1) Case of collecting at regular intervals
• The number of the LSB(1 byte) values : 7

• Estimated entropy : 2 bits of entropy

2) Case of collecting at random intervals within a given collection interval
• We assume that the entropy of GetTickCount, which is collected at random intervals within a given

collection interval, will be estimated higher than the estimated entropy in the previous slide.

Theoretical Analysis - GetTickCount

21/33 Kookmin University ICMC 2017

1. Collecting the noise source.

 Extract the most variable 1 byte among sample and Collect.
 Most entropy estimation test can calculate entropy for samples with the size of 8 bits or less.

 When selecting the most variable 1 byte position, use the Monobit(Frequency) test and Poker-8

test.

 Collection Options
1. Collection interval(ms) : 10, 20, 60, 100, 200, 500

2. Whether collecting at random intervals within a given collection interval : T/F

3. The number of samples collecting(byte) : 2000, 5000, 10000, 20000, 50000

 Select and extract the most variable 1 byte every time it is collected according to

each collection option.

Experimental Analysis - GetSystemTime, GetTickCount

22/33 Kookmin University ICMC 2017

2. Entropy estimation method

 Use three algorithms of Min-entropy estimate algorithm of TTA standard.
 The Most Common Value Estimate Algorithm

 The Collision Estimate Algorithm

 The Compression Estimate Algorithm

 The minimum of Min-entropy estimated by each of three algorithms

= Min-entropy of the noise source

 Since the collision estimate algorithm and the compression estimate algorithms

use the numerical method, these can operate abnormally.

 So Min-entropy of the noise source is obtained except for the result of the

abnormal operation of the algorithm.
 The result of the abnormal algorithm is represented by this pattern in the graph.

Experimental Analysis - GetSystemTime, GetTickCount

23/33 Kookmin University ICMC 2017

1. Collect at random interval within given collection interval and Estimate entropy of the

collected noise source.

Experimental Analysis - GetSystemTime

0
1
2
3
4
5
6
7
8

10ms 20ms 60ms 100ms 200ms 500ms

2000bytes 5000bytes 10000bytes 20000bytes 50000bytes

 100 ms & 10,000 bytes () : 0 bit of entropy
 The most variable 1 byte position selected : Date-related position

 The most variable 1 byte position selected from other results except for : Milliseconds-related position
 (LSB 1 btye)

GetSystemTime is appropriate to extract and collect the 1 byte related to milliseconds

in the sample, especially 1 byte located in the LSB(1 byte) position of milliseconds.

 pattern : Min-entropy of the noise source obtained except for the result of the abnormal operation of the algorithm.

①

①

24/33 Kookmin University ICMC 2017

1. Collect at random interval within given collection interval and Estimate entropy of the

collected noise source.

Experimental Analysis - GetSystemTime

0
1
2
3
4
5
6
7
8

10ms 20ms 60ms 100ms 200ms 500ms

2000bytes 5000bytes 10000bytes 20000bytes 50000bytes

 Experimental results do not follow the heuristic analysis results.
 Heuristic Analysis

 Focus on the number of the zzz values. (zzz = milliseconds)

 Full-entropy : 10 bits of entropy

 Experiment

 Focus on the most variable 1 byte.

 Full-entropy : 8 bits of entropy

 pattern : Min-entropy of the noise source obtained except for the result of the abnormal operation of the algorithm.

: Heuristic Analysis result

Do heuristic analysis of

GetSystemTime with

full-entropy of 8 bits

25/33 Kookmin University ICMC 2017

1. Collect at random interval within given collection interval and Estimate entropy of the

collected noise source.

Experimental Analysis - GetSystemTime

0
1
2
3
4
5
6
7
8

10ms 20ms 60ms 100ms 200ms 500ms

2000bytes 5000bytes 10000bytes 20000bytes 50000bytes

 Heuristic analysis of GetSystemTime with full-entropy of 8 bits
 Focus on LSB(1 byte) of zzz. (zzz = milliseconds)

 pattern : Min-entropy of the noise source obtained except for the result of the abnormal operation of the algorithm.

: Heuristic Analysis result

Given collection interval Estimated entropy

~ 15 ms 0 bit of entropy

16 ms ~ 4 bits of entropy

26/33 Kookmin University ICMC 2017

1. Collect at random interval within given collection interval and Estimate entropy of the

collected noise source.

Experimental Analysis - GetSystemTime

0
1
2
3
4
5
6
7
8

10ms 20ms 60ms 100ms 200ms 500ms

2000bytes 5000bytes 10000bytes 20000bytes 50000bytes

 Experimental results almost follow heuristic analysis results.

 pattern : Min-entropy of the noise source obtained except for the result of the abnormal operation of the algorithm.

: Heuristic Analysis result

Min-entropy of the collected GetSystemTime

 = min (Min-entropy estimated by the estimation algorithm,

 Min-entropy estimated by heuristic analysis)

27/33 Kookmin University ICMC 2017

2. Collect at regular intervals and Estimate entropy of the collected noise source.

Experimental Analysis - GetSystemTime

 Min-entropy of the collected GetSystemTime

 = min (Min-entropy estimated by the estimation algorithm,

 Min-entropy estimated by heuristic analysis)

 = 0 bit of entropy

 pattern : Min-entropy of the noise source obtained except for the result of the abnormal operation of the algorithm.

It is desirable to collect GetSystemTime at a random interval within a given

collection interval rather than a regular collection interval.

0
1
2
3
4
5
6
7
8

10ms 20ms 60ms 100ms 200ms 500ms

2000bytes 5000bytes 10000bytes 20000bytes 50000bytes

: Heuristic Analysis result

28/33 Kookmin University ICMC 2017

0
1
2
3
4
5
6
7
8

10ms 20ms 60ms 100ms 200ms 500ms

2000bytes 5000bytes 10000bytes 20000bytes 50000bytes

1. Collect at random interval within given collection interval and Estimate entropy of the

collected noise source.

Experimental Analysis - GetTickCount

 10 ms & 20,000 bytes () or 100 ms & 50,000 bytes () : 0 bit of entropy
 The most variable 1 byte position selected : Non-LSB(1 byte)
 The most variable 1 byte position selected from other results except for : LSB(1 btye)

GetTickCount is appropriate to extract and collect the LSB(1 byte) of the sample.

 pattern : Min-entropy of the noise source obtained except for the result of the abnormal operation of the algorithm.

①

① ②

②

29/33 Kookmin University ICMC 2017

0
1
2
3
4
5
6
7
8

10ms 20ms 60ms 100ms 200ms 500ms

2000bytes 5000bytes 10000bytes 20000bytes 50000bytes

1. Collect at random interval within given collection interval and Estimate entropy of the

collected noise source.

Experimental Analysis - GetTickCount

 pattern : Min-entropy of the noise source obtained except for the result of the abnormal operation of the algorithm.

: Heuristic Analysis result

 Experimental results almost follow heuristic analysis results.

Min-entropy of the collected GetTickCount

 = min (Min-entropy estimated by the estimation algorithm,

 Min-entropy estimated by heuristic analysis)

30/33 Kookmin University ICMC 2017

0
1
2
3
4
5
6
7
8

10ms 20ms 60ms 100ms 200ms 500ms

2000bytes 5000bytes 10000bytes 20000bytes 50000bytes

2. Collect at regular intervals and Estimate entropy of the collected noise source.

Experimental Analysis - GetTickCount

 Min-entropy of the collected GetTickCount

 = min (Min-entropy estimated by the estimation algorithm,

 Min-entropy estimated by heuristic analysis)

 = 0 bit of entropy

 pattern : Min-entropy of the noise source obtained except for the result of the abnormal operation of the algorithm.

It is desirable to collect GetTickCount at a random interval within a given

collection interval rather than a regular collection interval.

: Heuristic Analysis result

31/33 Kookmin University ICMC 2017

 Heuristic Analysis Results

Thus…

GetSystemTime
(Full-entropy : 10 bits)

GetSystemTime
(Full-entropy : 8 bits)

GetTickCount
(Full-entropy : 8 bits)

The most variable 1 byte milliseconds LSB(1 byte) of milliseconds LSB(1 byte)

Case of collecting at

random intervals within a

given collection interval

Given Collection
Interval

Estimated
Entropy

Given Collection
Interval

Estimated
Entropy

Given Collection
Interval

Estimated
Entropy

~ 9 ms 0 bit of entropy ~ 15 ms 0 bit of entropy ~ 31 ms 0 bit of entropy

10 ~ 99 ms 3 bits of entropy 16 ms ~ 4 bits of entropy 32 ~ 63 ms 1 bit of entropy

100 ms ~ 6 bits of entropy 64 ~ 127 ms 2 bits of entropy

128 ~ 255 ms 3 bits of entropy

256 ms ~ 4 bits of entropy

Case of collecting at

regular intervals
0 bit of entropy 0 bit of entropy 0 bit of entropy

 Comparison of experimental results and heuristic analysis results

 It is desirable to select the most variable 1 byte position considering the characteristics of the noise source.

 It is desirable to collect at random intervals within a given collection interval.

 In order to accurately evaluate the entropy, the heuristic analysis results and the experimental results should

be complementary. Min-entropy of the noise source = min(experimental results, heuristic analysis results)

32/33 Kookmin University ICMC 2017

 NIST, Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program,

August, 2016.

 M.S. Turan et al. Recommendation for the Entropy Sources Used for Random Bit Generation, (Second

DRAFT)NIST Special Publication 800-90B, Jan. 2016.

 Wolfgang Killmann and Werner Schindler, “A Proposal for : Functionality Classes and evaluation methodology

for true(physical) random number generators”, BSI AIS.31, September, 2001.

 MSDN, https://msdn.microsoft.com/

 KCMVP, http://www.nis.go.kr/AF/1_7_3_3/list.do

Reference

https://msdn.microsoft.com/

33/33 Kookmin University ICMC 2017

Thank you!

	Entropy Estimation Methods for SW Environments in KCMVP
	Contents
	Brief Introduction to KCMVP (1/3)
	Brief Introduction to KCMVP (2/3)
	Brief Introduction to KCMVP (3/3)
	Why is Entropy Analysis important?
	Entropy Estimation in S/W Environments
	Entropy Analysis Framework
	Correlation-based Entropy Analysis
	Correlation-based Entropy Analysis
	Correlation-based Entropy Analysis
	Correlation-based Entropy Analysis
	Correlation-based Entropy Analysis
	Correlation-based Entropy Analysis
	Correlation-based Entropy Analysis
	Q&A
	
	Standardization of Entropy Evaluation Algorithms for Noise Sources in Software Environments and its Application
	슬라이드 번호 2
	슬라이드 번호 3
	슬라이드 번호 4
	슬라이드 번호 5
	슬라이드 번호 6
	슬라이드 번호 7
	슬라이드 번호 8
	슬라이드 번호 9
	슬라이드 번호 10
	슬라이드 번호 11
	슬라이드 번호 12
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	슬라이드 번호 17
	슬라이드 번호 18
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	슬라이드 번호 23
	슬라이드 번호 24
	슬라이드 번호 25
	슬라이드 번호 26
	슬라이드 번호 27
	슬라이드 번호 28
	슬라이드 번호 29
	슬라이드 번호 30
	슬라이드 번호 31
	슬라이드 번호 32
	슬라이드 번호 33
	슬라이드 번호 34

