

FIPS 140-2 Crypto In the IoT

Chris Conlon ICMC17, May 16-19, 2017 Westin Arlington Gateway | Washington DC

Outline

- **A.** Intro to wolfSSL
- **B.** Overview of wolfCrypt FIPS
- C. FIPS 140-2 Challenges in the IoT
- **D.** Doing new validations
- **E.** Q&A

Overview wolfSSL and wolfCrypt FIPS

Introduction to wolfSSL

2 BILLION secure connections!

Introduction to wolfSSL - Products

wolfCrypt FIPS Object Module

- Independent of SSL/TLS
- Design simplifies updates
- Most bugs and vulnerabilities happen in SSL/TLS, not crypto

General Purpose Computer-Physical Boundary

Current wolfCrypt FIPS OE List

Certificate #2425

	Operating System	Processor	Platform
1	Linux 3.13 (Ubuntu)	Intel® Core™ i7-3720QM CPU @2.60GHz x 8	HP EliteBook
2	iOS 8.1	Apple™ A8	iPhone™ 6
3	Android 4.4	Qualcomm Krait 400	Samsung Galaxy S5
4	FreeRTOS 7.6	ST Micro STM32F	uTrust TS Reader
5	Windows 7 (64-bit)	Intel® Core™ i5	Sony Vaio Pro
6	Linux 3.0 (SLES 11 SP4, 64-bit)	Intel® Xeon® E3-1225	Imprivata OneSign
7	Linux 3.0 (SLES 11 SP4, 64-bit) on Microsoft Hyper-V 2012R2 Core	Intel® Xeon® E5-2640	Dell® PowerEdge™ r630
8	Linux 3.0 (SLES 11 SP4, 64-bit) on VMWare ESXi 5.5.0	Intel® Xeon® E5-2640	Dell® PowerEdge™ r630
9	Windows 7 (64-bit) on VMWare ESXi 5.5.0	Intel® Xeon® E5-2640	Dell® PowerEdge™ r630

Approved and Validated Crypto Functions

Algorithm	Description	Cert #
AES	[FIPS 197, SP 800-38A] (Encryption, Decryption) Modes: CBC, CTR, Key sizes: 128, 192, 256 bits	3157, 3330, 3417, 3490, 3508
DRBG	[SP 800-90A] (Hash_DRBG) Security Strengths: 256 bits	650, 775, 821, 863, 875
НМАС	[FIPS 198-1] (Generation, Verification) SHA sizes: SHA-1, SHA-256, SHA-384, and SHA-512	1990, 2121, 2175, 2228, 2241
RSA	[FIPS 186-4, and PKCS #1 v2.1 (PKCS1.5)] (Signature Generation, Signature Verification) Key sizes: 1024 (verification only), 2048	1602, 1710, 1749, 1791, 1803
SHA	[FIPS 180-4] (Digital Signature Generation, Digital Signature Verification, non-Digital Signature Applications). SHA sizes: SHA-1, SHA-256, SHA-384, SHA-512	2614, 2763, 2823, 2882, 2893
Triple-DES (TDES)	[SP 800-20] (Encryption, Decryption) Modes: TCBC, Key sizes: 3-key	1800, 1901, 1928, 1966, 1972

FIPS 140-2 Challenges in the IoT

FIPS 140-2 Challenges in the IoT

- Predominant challenges include:
 - Porting default shared library entry point
 - Running CAVP test vectors
 - Fitting FIPS module into available memory
 - Porting library to target environment

Porting Default Entry Point

- When library is first loaded, two things need to happen:
 - 1. Power-On Integrity Check
 - 2. Run Known Answer Tests
- Shared library default entry point is used for this

#define INITIALIZER(f) static void __attribute__((constructor)) f(void)

• Needs to be ported on new compiler/linkers (gcc, VS, etc)

FIPS 140-2 Module Runtime Requirements

wolfCrypt FIPS Module

Running CAVP Test Vectors

• Test Harness (Host/Agent)

Fitting FIPS Module into Memory

• IoT Device Memory Constraints Pose a Challenge

• Mitigations / Resolutions

- Configure algorithms differently (speed vs. size)
- Configure memory usage differently (stack vs. heap)
- Shrink module boundary

Porting Library to Target Environment

- IoT Devices Pose Portability Concerns
- Platform Details Can Vary:
 - Variety of RTOS's
 - Different toolchains / compilers
 - Memory configurations (stack vs. heap preference)
 - Threading / Mutexes
 - Seeding PRNG / sources of randomness
- wolfCrypt platform-dependencies have been abstracted out

- FIPS 140-2 Doing New Validations

New FIPS 140-2 Validations

• Validation Options:

- Adding new Operating Environment (OE)
- Rebranding Validation
- Growing (or Shrinking) Module Boundary

• Timeframe dependent on scope, platform, and lab/CMVP

Adding a New Operating Environment

Step 1: CAVP Testing and Algorithm Certificates

- 1. Define desired cryptographic module boundary
 - From customer:
 - **Exact platform** (hardware, OS version)
 - **Example app** demonstrating I/O from device (for test harness)
- 2. **Port** and **test** module and harness on desired validation target
- 3. Request test vectors from FIPS Lab
- 4. **Run** test vectors through module, return to FIPS Lab
- 5. Obtain Algorithm Certificates from CAVP

Adding a New Operating Environment

Step 2: CMVP and FIPS 140-2 Certificate

- 1. Update Security Policy, send to FIPS Lab
- 2. **On-site** testing at FIPS Lab with module
- 3. FIPS Lab submits to CMVP... wait...
- 4. FIPS 140-2 Certificate Issued, or Existing Updated

wolfCrypt FIPS Rebranded Validations

- Rebranded wolfCrypt FIPS validations possible
- One recent IoT-based example reduced FIPS boundary

Operating System	Processor
OpenRTOS v9.0.0	ATSAM4L

Algorithm	Description
AES	[FIPS 197, SP 800-38A] (Encryption, Decryption) Modes: CBC, CTR, Key sizes: 256 bits
НМАС	[FIPS 198-1] (Generation, Verification) SHA sizes: SHA-256
SHA	[FIPS 180-4] (Message Digest) SHA sizes: SHA-256

Summary

A. FIPS 140-2 Challenges in the IoT

- a. Porting default shared library entry point
- b. Running CAVP test vectors
- c. Fitting FIPS module into available memory
- d. Porting library to target environment

B. Doing new validations

- a. Adding a new OE
- b. Rebranded Validation
- c. Growing (Shrinking) Module Boundary

Thanks! Questions?

info@wolfssl.com www.wolfssl.com