Lessons learned in IoT Threat Modelling

Paul Bottinelli, Névine Ebeid, Kevin Henry
escrypt, Embedded Security by ETAS, Canada

ETAS Embedded Systems Canada, Inc
Outline

- Introduction – IoT, security and cryptographic modules
- Lessons learned in IoT threat modelling
- Methodology and examples
- Conclusion
Introduction
The Internet of Things

- IoT is the next (third) wave of Internet development

- 1st wave - 1 billion users with fixed internet
- 2nd wave - 2 billion additional users with mobile internet
- 3rd wave - up to 26 billion connected “things”
- HP study revealed 70% of IoT devices have inadequate security
Introduction
The Internet of Insecure Things

- **Common security issues leading to large and very disruptive attacks**
 - **Mirai**: malware converting IoT devices in botnet used in largest DDoS
 - **BrickerBot**: malware similar to Mirai, used in Permanent DoS (PDoS)
- **Lack of manufacturer security awareness**

```c
/*
  * mirai/bot/attack.c
  */

#define ATTACK_CONCURRENT_MAX 8
#define HTTP_CONNECTION_MAX 256

struct attack_target {
  struct sockaddr_in sock_addr;
  ipv4_t addr;
  uint8_t netmask;
};

struct attack_option {
  char *val;
  uint8_t key;
};

typedef void (*ATTACK_FUNC)(uint8_t, struct attack_target *,
  uint8_t, struct attack_option *);
typedef uint8_t ATTACK_VECTOR;

#define ATK_VEC_UDP 0 /* Straight up UDP flood */
#define ATK_VEC_VSE 1 /* Valve Source Engine query flood */
#define ATK_VEC_DNS 2 /* DNS water torture */
#define ATK_VEC_SYN 3 /* SYN flood with options */
#define ATK_VEC_ACK 4 /* ACK flood */
```
IoT and cryptographic modules

How do IoT devices and cryptographic modules relate?

● IoT devices can be viewed as extension of cryptographic modules
 ○ FIPS 140-2 description: *set of hardware, software, and/or firmware that implements Approved security functions and is contained within the cryptographic boundary*
 ○ Current certification is not adequate to provide the required assurance of the "faithfulness" of an IoT device

 [ICMC2016 – David McGrew]

● But it is also much more!
 ○ Connected
 ○ Computing (not only cryptographic operations) and Data
 ○ Whole system that depends on it and functions in parallel to it
What is unique about IoT and security?

- Manufacturing and deployment process
- Large attack surface
- Hostile environment

Identified some common insecurity that we used as groundwork for performing threat modelling
There is a Gap
 - Theory vs Practice
 - Design vs Implementation

Existing threat modelling frameworks difficult to apply to the IoT
 - IoT systems are big and complex
 - Price of device has to be kept low
 - Fast paced environment: companies don’t take time to invest in threat modeling during design phase
Lessons learned

- Certification valuable, but has limitation
 - IoT device is only a (small) part of the system
 - Might encourage bare minimum
 - Expensive

- Lessons learned: in order to achieve a minimum level of security in IoT, threat modelling has to be
 - Cheap
 - Simple and fast
 - Reiterated
Answer: A lightweight framework

- Series of targeted questions
- Tailored for IoT ecosystem
- Based on OWASP’s [IoT Framework Security Considerations](#)
- Does not compete with certification
Methodology and examples

Examples from template

<table>
<thead>
<tr>
<th>2.1.9 Default credentials</th>
<th>Yes</th>
<th>No</th>
<th>Unk.</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.9.1 No default credentials to access the device</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 2.1.9.2 No shared credentials | ![Yes](green) | ![No](red) | ![Unk.](black) | ![N/A](gray) |

<table>
<thead>
<tr>
<th>2.1.10 Fail-safe defaults principle</th>
<th>Yes</th>
<th>No</th>
<th>Unk.</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.10.1 Interfaces disabled by default</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Methodology and examples
Real examples

2.1.9 Default credentials

<table>
<thead>
<tr>
<th>2.1.9.1</th>
<th>No default credentials to access the device</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Default (root, default) credentials for SSH</td>
</tr>
<tr>
<td>High</td>
<td>Default (root, default) credentials for web interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.1.9.2</th>
<th>No shared credentials</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Same credentials for SSH and web interface</td>
</tr>
</tbody>
</table>

2.1.10 Fail-safe defaults principle

<table>
<thead>
<tr>
<th>2.1.10.1</th>
<th>Interfaces disabled by default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Med</td>
<td>Telnet port open for no reason</td>
</tr>
</tbody>
</table>
Goal: *Address lessons learned*

- Raise awareness on customer's side
- Initiate dialogue instead of final binary outcome
- Drive best practices approach during design (blank template) and/or development (filled template)

➢ Allow to reiterate at lower cost
Goal: Address lessons learned

- Template is series of simple targeted questions
- Broken down by components of a generic IoT system architecture
- No need to start from scratch for every new threat modelling or security assessment
- Allow to make it cheap and fast
Methodology - Summary and comparison

Comparison with other existing industry standards threat modelling

<table>
<thead>
<tr>
<th>Common Criteria</th>
<th>FIPS 199 CIA</th>
<th>Our approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Very generic</td>
<td>● Very generic</td>
<td>● Targeted</td>
</tr>
<tr>
<td>● Expensive</td>
<td>● Expensive</td>
<td>● Cheap</td>
</tr>
<tr>
<td>● Complex</td>
<td>● Quite simple</td>
<td>● Simple</td>
</tr>
<tr>
<td>● Documentation based</td>
<td>● Documentation based</td>
<td>● Adaptable</td>
</tr>
<tr>
<td>● Long process</td>
<td>● Long process</td>
<td>● Fast</td>
</tr>
<tr>
<td>● Certification</td>
<td>● Certification</td>
<td>● Not intended to be a certification</td>
</tr>
</tbody>
</table>

- **Very generic**
- **Expensive**
- **Complex**
- **Documentation based**
- **Long process**
- **Certification**
Methodology
Generic Architecture of IoT system

IoT Device <-> Gateway <-> Mobile <-> Cloud

Most common link —
Other potential link ——
Methodology

Generic Architecture of IoT system

IoT Device

Mobile

Gateway

Cloud

Most common link

Other potential link

questions per component

35

63

43

128
2.1.7 Update verification and software release process

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>Unk.</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1.7.1 Updates through secure channel

2.1.7.2 Integrity verified after download

2.1.7.3 Authenticity verified after download

2.1.7.4 Integrity verified before installation

2.1.7.5 Authenticity verified before installation
Methodology and examples

Template examples for Gateway

2.2.10 Secure web interface

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>Unk.</th>
<th>N/A</th>
</tr>
</thead>
</table>

2.2.10.1 Web interface access to the Gateway

If Yes

- 2.2.10.2 Limited access to web interface
- 2.2.10.6 Secure communication to web interface (e.g., with TLS)
- 2.2.10.7 Not using self-signed or invalid certificates
2.1.2 Channel security

2.1.2.1 Communication through a secure channel (encrypted and authenticated)

2.1.2.5 Key generation/distribution follows a process
2.1.2 Channel security

2.1.2.1 Communication through a secure channel (encrypted and authenticated)

Encrypted channel with WPA2-PSK

2.1.2.5 Key generation/distribution follows a process

Critical WPA2 passkey generation is weak

Yes No Unk. N/A

● ● ● ○
Conclusion

● Lack of security awareness in IoT
● Remedy, make threat modelling
 ○ Cheap
 ○ Fast and simple
 ○ Continuous, a part of development process
● Our answer
 ○ Threat modelling as targeted questions
 ○ E.g., Customer A thought their product was good enough
 ■ We quickly identified issues
 ■ This prompted a mindset change, dialogue and relationship