

Lessons learned in IoT Threat Modelling Paul Bottinelli, Névine Ebeid, Kevin Henry escrypt, Embedded Security by ETAS, Canada ETAS Embedded Systems Canada, Inc

- Introduction IoT, security and cryptographic modules
- Lessons learned in IoT threat modelling
- Methodology and examples
- Conclusion

• IoT is the next (third) wave of Internet development

1990s 2000s 2020

- 1st wave 1 billion users with fixed internet
- 2st wave 2 billion additional users with mobile internet
- 3rd wave -up to 26 billion connected "things"
- HP study revealed 70% of IoT devices have inadequate security

- Common security issues leading to large and very disruptive attacks
 1 /* /* mirai/bot/attack.ll
 - Mirai: malware converting IoT devices in botnet used in largest DDoS
 - BrickerBot: malware similar to Mirai, used in Permanent DoS (PDoS)
- Lack of manufacturer security awareness

```
#define ATTACK CONCURRENT MAX
     #define HTTP_CONNECTION_MAX
                                     256
    struct attack_target {
         struct sockaddr_in sock_addr;
10
         ipv4_t addr;
         uint8 t netmask;
12
    };
14 V
    struct attack option {
         char *val:
15
         uint8_t key;
    }:
    typedef void (*ATTACK_FUNC) (uint8_t, struct attack_target *,
19
20
         uint8 t, struct attack option *);
21
     typedef uint8_t ATTACK_VECTOR;
     #define ATK_VEC_UDP
                                Ø /* Straight up UDP flood */
     #define ATK VEC VSE
     #define ATK_VEC_DNS
                                   /* DNS water torture */
     #define ATK_VEC_SYN
                                   /* SYN flood with options */
26
                                   /* ACK flood */
     define ATK VEC ACK
```

Paul Bottinelli | 2017-04-18 | © ETAS Embedded Systems Canada Inc. 2017. All rights reserved, also regarding any disposal, exploitation, reproduction, editing,

distribution, as well as in the event of applications for industrial property rights.

Version: 01 | State: submitted | If printed, this document is an uncontrolled copy

- IoT devices can be viewed as extension of cryptographic modules
 - FIPS 140-2 description: set of hardware, software, and/or firmware that implements Approved security functions and is contained within the cryptographic boundary
 - Current certification is not adequate to provide the required assurance of the "faithfulness" of an IoT device

[ICMC2016 – David McGrew]

- But it is also much more!
 - Connected
 - Computing (not only cryptographic operations) and Data
 - Whole system that depends on it and functions in parallel to it

- What is unique about IoT and security?
 - Manufacturing and deployment process
 - Large attack surface
 - Hostile environment
- Identified some common insecurity that we used as groundwork for performing threat modelling

• There is a Gap

- Theory vs Practice
- Design vs Implementation
- Existing threat modelling frameworks difficult to apply to the IoT
 - IoT systems are big and complex
 - Price of device has to be kept low
 - Fast paced environment: companies don't take time to invest in threat modeling during design phase

- Certification valuable, but has limitation
 - IoT device is only a (small) part of the system
 - Might encourage bare minimum
 - Expensive
- Lessons learned: in order to achieve a minimum level of security in IoT, threat modelling has to be
 - Cheap
 - Simple and fast
 - Reiterated

• Answer: A lightweight framework

- Series of targeted questions
- Tailored for IoT ecosystem
- Based on OWASP's IoT Framework Security Considerations
- Does not compete with certification

2.1.9 Default credentials Yes No Unk. N/A 2.1.9.1 No default credentials to access the device

2.1.9.2 No shared credentials

0000

()

2.1.10 Fail-safe defaults principle

2.1.10.1 Interfaces disabled by default

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

2.1.9 **Default credentials**

2.1.9.1 No default credentials to access the device

High Default (root, default) credentials for SSH

High Default (root, default) credentials for web interface

2.1.9.2 No shared credentials

High Same credentials for SSH and web interface

2.1.10 Fail-safe defaults principle

2.1.10.1 Interfaces disabled by default

Med Telnet port open for no reason

()

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Yes No Unk. N/A

Goal: Address lessons learned

- Raise awareness on customer's side
- Initiate dialogue instead of final binary outcome
- Drive best practices approach during design (blank template) and/or development (filled template)
- > Allow to reiterate at lower cost

Goal: Address lessons learned

- Template is series of simple targeted questions
- Broken down by components of a generic IoT system architecture
- No need to start from scratch for every new threat modelling or security assessment
- > Allow to make it cheap and fast

Common Criteria	FIPS 199 CIA	Our approach
 Very generic Expensive Complex Documentation based Long process Certification 	 Very generic Expensive Quite simple Documentation based Long process Certification 	 Targeted Cheap Simple Adaptable Fast Not intended to be a certification

Paul Bottinelli | 2017-04-18 | © ETAS Embedded Systems Canada Inc. 2017. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Version: 01 | State: submitted| If printed, this document is an uncontrolled copy.

2.1.7 Update verification and software release process

- 2.1.7.1 Updates through secure channel
- 2.1.7.2 Integrity verified after download
- 2.1.7.3 Authenticity verified after download
- 2.1.7.4 Integrity verified before installation
- 2.1.7.5 Authenticity verified before installation

Yes No Unk N/A

2.2.10 Secure web interface

2.2.10.1 Web interface access to the Gateway

If Yes 🜔 :

2.2.10.2 Limited access to web interface

2.2.10.6 Secure communication to web interface (e.g., with TLS)

2.2.10.7 Not using self-signed or invalid certificates O O O

Paul Bottinelli | 2017-04-18 | © ETAS Embedded Systems Canada Inc. 2017. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. Version: 01 | State: submitted| If printed, this document is an uncontrolled copy.

Yes No Unk. N/A

2.1.2 Channel security

:

2.1.2.1 Communication through a secure channel (encrypted and authenticated)

2.1.2.5 Key generation/distribution follows a process

Yes No Unk. N/A

2.1.2 Channel security

÷

2.1.2.1 Communication through a secure channel (encrypted and authenticated)

Encrypted channel with WPA2-PSK

2.1.2.5 Key generation/distribution follows a process Critical WPA2 passkey generation is weak Yes No Unk. N/A

- Lack of security awareness in IoT
- Remedy, make threat modelling
 - Cheap
 - Fast and simple
 - Continuous, a part of development process

• Our answer

- Threat modelling as targeted questions
- E.g., Customer A thought their product was good enough
 - We quickly identified issues
 - This prompted a mindset change, dialogue and relationship