

Cryptography and the Common Criteria (ISO/IEC 15408)

by Kirill Sinitski

About CygnaCom

- FIPS and Common Criteria Services
 - Accredited testing laboratories
 - NIAP, NIST, CSEC
- Professional Services
 - PKI infrastructure and deployments
 - Gov't security policies

Standards

FIPS i%dk 050A

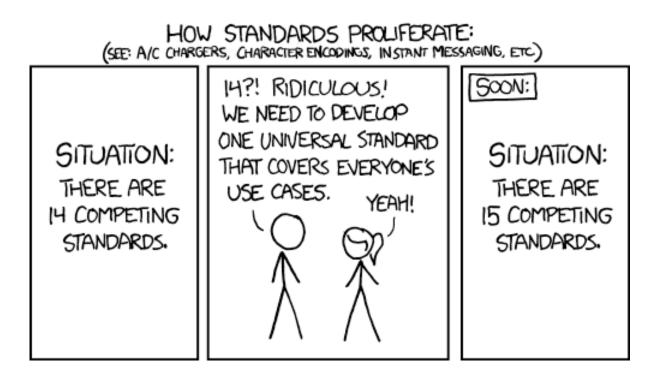
n∃f0 WJ⊑j %C1m

ОJdN

gCCu AD<x

* jdj

WJE i


%C1m

O D < N

g**J**du ×PKT

*jdj oAS: QP@f ovj\

SACN NIAP JEjD

About Common Criteria

- What is Common Criteria (ISO/IEC 15408)
 - Internationally Recognized Standard
- Common Criteria Recognition Arrangement (CCRA)
- Schemes
 - Represent Individual Countries
 - Certificate Authorizing and Consuming
- Common Criteria Portal and Scheme Lists

Why Common Criteria?

- National IA acquisition policies
 - US NSTISSP #11
 - Canadian PWGSC tenders
- Evolution and EALs
 - Understanding EALs
 - Standard Protection Profiles
- Categories of products
 - Portal vs. NIAP

CC Evaluation Process Overview

- Key Common Criteria Documents
 - Security Target
 - Protection Profile
- Evaluation Process
 - Eligibility
 - Kick-off and in-evaluation list
 - Milestones
 - Final Reports
 - Posted

Scheme Policy on Cryptography

- US: NIAP Policy Letter #5
 - CAVP and/or CMVP
- Canada: CCS Instruction #4
 - CMVP for core functionality, CAVP for everything else

Germany

List of approved algorithms

Standard and Collaborative PPs

- Protection Profile (PP) is a framework
 - Security Target "template"
 - Standard within standard
 - Defines evaluation boundary
 - Defines security problem definition
 - Specifies security functionality
 - Establishes documentation and testing activities
 - EAL vs. Standard-PP
 - International vs. NIAP
 - Extended Packages
 - Exact Conformance

Standard Protection Profiles

- NIAP PPs
 - Network Devices (NDPP)
 - Wireless LAN (WLAN)
 - Enterprise (ESM)
 - Mobility (MD)
 - Application (App on OS)
 - Operating System (OS)
 - Encrypted Storage
- International Collaborative PPs
 - Network Devices (NDcPP)
 - Drive Encryption

"Baseline" Cryptographic Requirements

- SFR Cryptographic Support (FCS)
 - Cryptographic Key Generation
 - Cryptographic Signatures
 - Encryption/Decryption
 - Hashing
 - Keyed-Hash Message Authentication
 - Random Bit Generation
- Assurance Activities
 - Zeroization
 - Seeding and Entropy

Cryptographic Keys

- Cryptographic Key Generation
 - Generation is optional, keys can be imported
 - RSA
 - 2048-bit or greater
 - Meet FIPS PUB 186-4 Appendix B.3
 - ECC
 - NIST P-256, P-384, P-512 curves
 - Meet FIPS PUB 186-4 Appendix B.4
 - FCC
 - 2048-bit or greater
 - Meet FIPS PUB 186-4 Appendix B.3

Lugnacom

Cryptographic Keys

Volatile memory

- EEPROM

Disk drive

– Flash

Cryptographic Key Destruction

Three times random pattern

• Direct overwrite with random or zeroes, read-verify

Direct overwrite with random followed by a read-verify

Direct overwrite with zeroes, block erase, and read verify

Zeroization is mandatory

Cryptographic Signatures

- RSA
 - FIPS PUB 186-4 Section 5.5
 - RSASSA-PKCS1-v1.5 or RSASSA-PSS
 - 2048 bits or greater generation
 - ECDSA
 - FIPS PUB 186-4 Section 6
 - 256 bits of greater
 - NIST curves P-256, P-384, and optionally P-521

Encryption and Decryption

- AES
 - Typically: CBC, GCM
 - Rarely: XTS, CCM
 - Key sizes: 128, 192, 256
 - NIST SP 800-38 A-E or ISO 10116, ISO 19772

Hashing

- SHA-1
 - Allowed to comply with SP 800-131A
 - Usually PP has a note on overall crypto strength
- SHA-2
 - Typically: SHA-256, SHA-384, SHA-512
 - Rarely: SHA-224
- FIPS Pub 180-4, ISO/IEC 10118-3:2004

Keyed-hash message authentication

HMAC-SHA-1

%C1m O**r**dN

gCCu AD<× *idi

%⊂1 m <u>0</u> D < N

q」du

@P@ f 0 る . I \

* id

ī

ы . І

- Usually PP includes a note on key size range
- HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512
- FIPS Pub 198-1, ISO/IEC 9797-2:2011, Section 7

Random Bit Generation

- RNGs
 - Hash_DRBG
 - HMAC_DRBG
 - CTR_DRBG (AES)
- Seeding
 - 128, 256 bits of entropy
 - NIST SP 800-57, ISO/IEC 18031:2011 Table C1
 - Chain from platform's certified DRBG
- Entropy Assessment Report (EAR)
 - IAD review process
 - Loosely following NIST SP 800-90B

"Exotic" Cryptographic Requirements

- EP File Encryption
 - Key Wrap, Key Wrap with Padding, RSA using KTS-OAEP
 - Key Storage, Key Management
- WLAN
 - Key Distribution from 802.1X Authorization Server
 - AES Key Wrap in an EAPOL-Key frame
- NIAP Policy Letter #23
 - IEEE 802.11-2012
 - AES-CCM for wireless chipset

Documentation Requirements

• Certificate Coverage Table

FCS_COP.1(1) Cryptographic Operation (encryption/decryption)	AES-CBC-128 and AES-CBC-256 for data encryption/decryption implemented to meet FIPS PUB 197, "Advanced Encryption Standard (AES)" in compliance with NIST SP 800-38A. Encryption/decryption performed by the cryptographic module operating in the FIPS mode.	AES #2971
FCS_COP.1(2) Cryptographic Operation (cryptographic signature)	RSA Digital Signature Algorithm (rDSA) with a key size (modulus) of 2048 bits or greater in compliance with FIPS PUB 186-3, "Digital Signature Standard". Cryptographic signature functionality is performed by the cryptographic module.	RSA #1560
FCS_COP.1(3) Cryptographic Operation (cryptographic hashing)	SHA-1 and SHA-256 cryptographic hashing implemented to meet FIPS PUB 180-3, "Secure Hash Standard" is performed by the cryptographic module operating in the FIPS mode.	SHA #2497

- CSP Zeroization Table
- Entropy Assessment Report

Entropy Assessment Report

- Part of all Standard PPs
 - Random Bit Generation (FCS_RBG_EXT.1)
 - NIST special publication 800-90B
- Entropy Assessment Report (EAR)
 - Unconditioned source data analysis
 - Operating Conditions
 - Health Testing
 - Entropy production and consumption rates
 - Sources hardware and software

Entropy Assessment Report (continued)

- Detailed PRNG seed creation description
 - Saved state description
 - Seed and Nonce Composition
- Per Source Analysis
 - 1 mil samples for each entropy source
 - "Raw" data from each source
- Operating Scenarios
 - Initial startup entropy rate
 - Idle system entropy rate

Third-party Cryptographic Modules

- Open Source Software
 - OpenSSL, LibreSSL, NaCL, cryptlib
- Closed Source Software
 - NanoSSL, SafeNet
- Hardware Implementations
 - HSMs
 - CPU and cryptographic acceleration
 - Hardware noise sources
- Opportunity
 - Test harness
 - Platform CMVP certificates

System Integration Blues

- Applicability
 - Platforms and equivalence arguments
 - Old compliance claims (e.g. FIPS PUB 186-2)
 - Missing certificate coverage (e.g. ECDSA P-384)
- Documentation
 - Entropy and seeding
 - Zeroization of CSP
 - NIST SP 800-56B compliance tables
- Vulnerability analysis
 - CVE history

Equivalency Arguments

- Only applicable to CMVP
- Acceptable Deviations in Operational Environment
 - OS version and compiler version
 - Processor model
- Unacceptable Deviations
 - Processor Architecture (ARMv7 vs x86)
 - OS kernel (Windows 7 vs. BSD)
- Problematic Claims
 - Operational Environment Mismatches
 - ARMv7 vs PowerPC, NetBSD vs. RHEL
 - Wrong modes and key sizes
 - AES128-CBC vs AES256-CTR

Common Problematic Claims

- Claiming OpenSSL certs with just library
 - Baseline OpenSSL library inadequate
- Modifying certified module in any way
 - Mix and match claims
 - Multiple modules with questionable interoperability
- Operational Environment Mismatches
 - ARMv7 vs PowerPC
 - NetBSD vs. RHEL
- Wrong modes and key sizes
 - AES128-CBC vs AES256-CTR

Questions?

