
Entropy as a Service
Unlocking the full potential of
cryptography

Apostol Vassilev
Robert Staples

ICMC, May, 2016, Ottawa

Cryptography enjoys a Renaissance period of
increasingly fast evolution

● IoT and PQC are the next big frontiers
Emerging crypto technologies abound

● lightweight crypto
● lighter versions of legacy protocols

● tinyDTLS, lightweight DTLS
● Post-Quantum Cryptography (PQC)

 New crypto is cool but have we solved all
known
 problems with conventional cryptography?

A perspective

In modern cryptography the algorithms are
known

Key generation and management govern the
strength and security of keys

Key generation is strongly
dependent on entropy

Observation

Image Courtesy: XKCD, https://en.wikipedia.org/wiki/Xkcd

The elephant in the room

 Where are the
 keys coming
 from?

Image Courtesy: Web

“Factoring RSA keys from certified smart cards
(Coppersmith in the wild)”,
 Bernstein, Chang, Cheng, Chou, Heninger,
Lange, van Someren

Problem: Low-quality hardware RNG, stuck in a short cycle:
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
etc.

Likely reasons for using this weak design: cost of high-quality
hardware, cost of licensing patents

Real World Examples 2013

“Mining Your Ps and Qs: Detection of Widespread Weak Keys
in Network Devices”
 Heninger, Durumeric,
Wustrow, Halderman

Scanned 28 Mil TLS and 23 Mil SSH hosts on the
Internet
• 0.75% of TLS certificates share keys

• due to insufficient entropy during key generation
• another 1.70% come from same faulty implementations

• 0.50% of TLS hosts and 0.03% of SSH hosts revealed
RSA private keys
• public keys shared nontrivial common factors due to entropy

problems

• 1.03% of SSH hosts revealed DSA private keys
• due to insufficient signature randomness

Real World Examples
2012

The Linux kernel dissected – four sources of entropy
● Device
● Input
● Interrupt
● Disk

“minimal” (no GUI)
Ubuntu Server
v14.04.3 64-bit w/
Kernel v4.2.3

Real World Examples 2016

Period of strong
demand for entropy
from kernel and user-
space via /dev/urandom
(non-blocking)

Using a finite set of statistical tests on data samples can lead to
misleading results

Example 1: expand a well-known irrational number, e.g. π, and test
the output bit sequence for randomness - it will be reported as
random.

Example 2: challenges in hardware-based sources of randomness –
see “Sources of Randomness in Digital Devices and Their Testability”

 Viktor Fischer, Univ Lyon, UJM-Saint-Etienne, Laboratoire Hubert Curien; NIST DRBG Workshop
2016
 http://csrc.nist.gov/groups/ST/rbg-workshop-2016/presentations/SessionVI-2-viktor-fischer-
presentation.pdf

Using the statistical test approach of SP 800-90B makes it hard to
automate the estimation of entropy
 automation is critically important for the new CMVP @ NIST

Testing randomness is
hard

How about delivering high-entropy
random data from a provably good source
to needy clients?

Public service providing high-entropy
random data for use in cryptography
 Entropy as a Service (EaaS)

• delivers entropy securely (no one can see)
upon request from clients

Our approach

Not a key generation service
• cryptographic keys are generated locally

on the client using DRBG’s

Not similar to the NIST beacon
• EaaS does not record incoming or

outgoing requests
• EaaS does not record generated entropy

Our solution is

EaaS architecture

A protocol sketch

12

EaaS client usage model

13

f: a hash function; EaaS
1
 … EaaS

n
: independent EaaS instances providing data for computing

u
out

 = f(x
0
… x

n
), where x

i
,1 ≤ i ≤ n, is data obtained from the EaaS

i
 instance using the client

EaaS access key; Note, there is one client access key for accessing all EaaS
i
 instances.

A note on XoR mixing

14

A dishonest EaaS instance may gain insight into the output seed
if different size buffers are padded and XoR-ed.

Hash-based mixing

15

Safe and simple

Client EaaS access key
management protocol

16

Protocol sketch for
managing EaaS
access keys with
Perfect Forward
Secrecy (PFS)

Instrumented to access EaaS and seed local
entropy pool

C program, using
“RNDADDENTROPY”
ioctl to add
entropy.

Linux Kernel Revisited

Enterprise key strength
attestation

EaaS

Standard attacks on web service and protocol
• Message replay
• Man-In-The-Middle
• DNS poisoning

Protocol features and out-of-band provisioning
mitigate these attacks

Potential attacks and mitigation

EaaS-specific attacks on the web service
• Honest-but-curious EaaS instance
• Dishonest-but-non-colluding EaaS

instances
• Dishonest-and-colluding EaaS instances

EaaS ecosystem

Trust-related attacks and
mitigation

Image Courtesy: Cornell Univ. Networks Course Blog
https://blogs.cornell.edu/info2040/2012/09/26/7720/

See project page at : http://csrc.nist.
gov/projects/eaas/

Now: Functional prototype implemented; demoed at
 CIF 2015 in Washington, DC
 DRBG Workshop 2016, NIST

Next:
 Stand-up publicly accessible NIST EaaS in Q2,
2016

 publish client and server sample code on GitHub

 Conceive public criteria for reputable EaaS hosts

Status and next steps

Questions?

