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Cryptography enjoys a Renaissance period of 
increasingly fast evolution

● IoT and PQC are the next big frontiers 
Emerging crypto technologies abound

● lightweight crypto
● lighter versions of legacy protocols

● tinyDTLS, lightweight DTLS
● Post-Quantum Cryptography (PQC)

             New crypto is cool but have we solved all 
known 
             problems with conventional cryptography? 

A perspective



In modern cryptography the algorithms are 
known

Key generation and management govern the 
strength and security of keys
 
Key generation is strongly 
dependent on entropy 

Observation

Image Courtesy: XKCD, https://en.wikipedia.org/wiki/Xkcd



The elephant in the room

 Where are the 
    keys coming     
                 from? 

Image Courtesy: Web



“Factoring RSA keys from certified smart cards 
(Coppersmith in the wild)”, 
                                                       Bernstein, Chang, Cheng, Chou, Heninger, 
Lange, van Someren

Problem: Low-quality hardware RNG, stuck in a short cycle:  
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 
etc.

Likely reasons for using this weak design: cost of high-quality 
hardware, cost of licensing patents

Real World Examples 2013



“Mining Your Ps and Qs: Detection of Widespread Weak Keys 
in Network Devices” 
                                                                Heninger, Durumeric, 
Wustrow, Halderman 

Scanned 28 Mil TLS and 23 Mil SSH hosts on the 
Internet
• 0.75% of TLS certificates share keys

• due to insufficient entropy during key generation
• another 1.70% come from same faulty implementations 

• 0.50% of TLS hosts and 0.03% of SSH hosts revealed 
RSA private keys 
• public keys shared nontrivial common factors due to entropy 

problems  

• 1.03% of SSH hosts revealed DSA private keys
• due to insufficient signature randomness

Real World Examples 
2012



The Linux kernel dissected – four sources of entropy
● Device
● Input
● Interrupt
● Disk

“minimal” (no GUI) 
Ubuntu Server 
v14.04.3 64-bit w/ 
Kernel v4.2.3 

Real World Examples 2016

Period of strong 
demand for entropy 
from kernel and user-
space via /dev/urandom 
(non-blocking)



Using a finite set of statistical tests on data samples can lead to 
misleading results

Example 1: expand a well-known irrational number, e.g. π, and test 
the output bit sequence for randomness - it will be reported as 
random.

Example 2: challenges in hardware-based sources of randomness – 
see “Sources of Randomness in Digital Devices and Their Testability”

       Viktor Fischer, Univ Lyon, UJM-Saint-Etienne, Laboratoire Hubert Curien; NIST DRBG Workshop 
2016  
          http://csrc.nist.gov/groups/ST/rbg-workshop-2016/presentations/SessionVI-2-viktor-fischer-
presentation.pdf

Using the statistical test approach of SP 800-90B makes it hard to 
automate the estimation of entropy
        automation is critically important for the new CMVP @ NIST

Testing randomness is 
hard



How about delivering high-entropy 
random data from a provably good source 
to needy clients?

                                                                  
Public service providing high-entropy 
random data for use in cryptography 
      Entropy as a Service (EaaS)

• delivers entropy securely (no one can see) 
upon request from clients

Our approach



Not a key generation service                                                   
• cryptographic keys are generated locally 

on the client using DRBG’s

Not similar to the NIST beacon                                                  
• EaaS does not record incoming or 

outgoing requests
• EaaS does not record generated entropy

Our solution is



EaaS architecture



A protocol sketch

12



EaaS client usage model
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A note on XoR mixing
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A dishonest EaaS instance may gain insight into the output seed 
if different size buffers are padded and XoR-ed. 



Hash-based mixing
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Safe and simple 



Client EaaS access key 
management protocol
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Protocol sketch for 
managing EaaS 
access keys with 
Perfect Forward 
Secrecy (PFS) 



Instrumented to access EaaS and seed local 
entropy pool

C program, using 
“RNDADDENTROPY” 
ioctl to add 
entropy.

Linux Kernel Revisited



Enterprise key strength 
attestation 

EaaS



Standard attacks on web service and protocol                                                
• Message replay
• Man-In-The-Middle
• DNS poisoning

Protocol features and out-of-band provisioning 
mitigate these attacks                                               

Potential attacks and mitigation



EaaS-specific attacks on the web service            
• Honest-but-curious EaaS instance
• Dishonest-but-non-colluding EaaS 

instances
• Dishonest-and-colluding EaaS instances

EaaS ecosystem                                               

Trust-related attacks and 
mitigation

Image Courtesy: Cornell Univ. Networks Course Blog
https://blogs.cornell.edu/info2040/2012/09/26/7720/



See project page at : http://csrc.nist.
gov/projects/eaas/

Now: Functional prototype implemented; demoed at
     CIF 2015 in Washington, DC
     DRBG Workshop 2016, NIST

Next: 
     Stand-up publicly accessible NIST EaaS in Q2, 
2016

    publish client and server sample code on GitHub

     Conceive public criteria for reputable EaaS hosts

Status and next steps



Questions?


