Entropy as a Service

Unlocking the full potential of
cryptography

Apostol Vassilev
Robert Staples

ICMC, May, 2016, Ottawa

NST

uuuuuu | Institute of
Slu dards and Techn Iogy
u.s. ment of Comme

A perspective

Cryptography enjoys a Renaissance period of
increasingly fast evolution

o I0T and PQC are the next big frontiers
Emerging crypto technologies abound
o lightweight crypto B AN
« lighter versions of legacy protocols s
« tinyDTLS, lightweight DTLS
o Post-Quantum Cryptography (PQC)

?_ New crypto is cool but have we solved all

& : L
-~ problems with conventional cryptography?

A

Observation

NIST

National Institute of
Stan d d dTech Iogy

t of Com

In modern cryptography the algorithms are

known‘

Key generation and mai
streng‘and security o

Key generation is stron,
dependent on entropy

ALAIH, DGNEHum
DONEHLINL, ALA'IH,
ALATH, DONEHLIN|,
DONEHLINI, DDNEHUHl
ALATH, ALAIH,
DONEHLINL ALAIH,
DDNEHLIH1 DUNEHLINI
D{JNEHLIM

ﬁﬁuﬁt

Image Courtesy: XKCD, https://en.wikipedia.org/wiki/Xkcd

FOR ADDED SECURITY, AFTER
WE ENCRYPT THE DATA STREAM,
WE SEND IT THROUGH OUR
NAVATO CODE TALKER.

... IS HE JUST USING
NAVATO WORDS FOR
'ZERD smm "ONE"?

WHOA, HEY, KEEP
YOUR U“CMCE DOWN!

The elephant in the room

Where are the 483 o
keys coming @ &
from? LAY

Image Courtesy: Web

NIST

National Institute of
Standards and Technology
. e U.S. Department of Commerce

Real World Examples 2013

“Factoring RSA keys from certified smart cards
(Coppersmith in the wild)”,

Bernstein, Chang, Cheng, Chou, Heninger,
Lange, van Someren

Problem: Low-quality hardware RNG, stuck in a short cycle:
001001001001001001001001001001001001
001001001001001001001001001001001001
001001001001001001001001001001001001
001001001001001001001001001001001001
etc.

Likely reasons for using this weak design: cost of high-quality
hardware cos<t of licen<ine natents<

A

eal World Examples
2012

“Mining Your Ps and Qs: Detection of Widespread Weak Keys

in Network Devices”

Heninger, Durumeric,
Wustrow, Halderman

Scanned 28 Mil TLS and 23 Mil SSH hosts on the
Internet
0.75% of TLS certificates share keys

- due to insufficient entropy during key generation
- another 1.70% come from same faulty implementations

0.50% of TLS hosts and 0.03% of SSH hosts revealed
RSA private keys

- public keys shared nontrivial common factors due to entropy
problems

~ ¥ £ o~ ww w P o - B g N A

-2

NIST

National Institute of
Standards and Technology

S U.S. Department of Commerce

Real World Examples 2016

The Linux kernel dissected — four sources of entropy

o Device

o Input

o Interrupt
e Disk

“minimal” (no GUI)
Ubuntu Server
V14.04.3 64-bit w/
Kernel v4.2.3

n Bits

Estimate

Kernel Entropy Estimate
[proc/sys/fkernelfrandom/entropy_avail

Period of strong
55 demand for entropy
from kernel and user-
space via /dev/urandom
(non-blocking)

150

1 4 7 10 13 16 19 22 25 2B 31 34 37 40 43 46 45 52 55 58 61 64 67 70 73 76 79 82 B5 BE 51 94 57 100105 106 109112 115 118

Seconds since Boot

—Base 4.2 3 = Minus_Input Minus_Interrupt Minus_Device

e [\inii s_Dievice_and_in put e IliN5_Device_INput_Interrupt s ssss« 112 Bits

NIST

National Institute of
- Standards and Technology
S — ~ U.S. Department of Commerce

Testing randomness is
hard

Using a finite set of statistical tests on data samples can lead to
misleading results

Example 1: expand a well-known irrational number, e.g. 7T, and test

the output bit sequence for randomness - it will be reporteél as
random.

Example 2: challenges in hardware-based sources of randomness —
see “Sources of Randomness in Digital Devices and Their Testability”

6 Viktor Fischer, Univ Lyon, UJM-Saint-Etienne, Laboratoire Hubert Curien; NIST DRBG Workshop
201

http://csrc.nist.gov/groups/ST/rbg-workshop-2016/presentations/SessionVI-2-viktor-fischer-
presentation.pdf

Using the statistical test approach of SP 800-90B makes it hard to
automate the estimation of entropy

automation is critically important for the new CMVP @ NIST

Our approach

How about delivering high-entropy
- random data from a provably good source
® to needy clients?

Public service providing high-entropy
random data for use in cryptography
Entropy as a Service (EaaS

- delivers entropy securely (no one can see)
11non raaliact from clientce

Our solution is

Not a key generation service

- cryptographic keys are generated locally
on the client using DRBG’s

Not similar to the NIST beacon

- EaaS does not record incoming or
outgoing requests

- EaaS does not record generated entropy

NIST

National Institute of

Standards and Technology
U.S. Department of Commerce

EaaS architecture

MNIST MNIST
Internet Internet Quantum
Time Service Time Server / device
n (ITS)
m
| |

HSM device .

Ris;) = :
Hash[HSM;,
Cuantumsg

Eaas server

ERROR: Halt

» Entropy as a .
IoT client w/ - | Service Reque_stee' .
network 2 o~ (Eaas) public key o
capability, ,” ‘(gqe e proxy - =}
i.e. device on the . A T
el z RAM Rises)
Riseal
Riseal
H/W Root of Trust
chip; Continuous
TrueRBG
BEST, if available, to health - -
— hold a provisioned monitor o
| key pair. (SP 800-30B —
seed = tests) PromasEns sy
S e Otherwise, a
Eaai::’:an: protected memory/
DRBG(seed) file location may be

used

MNMOTE: EaaS5,, ..., Eaas, above indicate data from n
different Eaa$ server instances;
local indicates locally available random data, if any

NIST

National Institute of
Standards and Technology

. U.S. Department of Commerce

A protocol sketch

HTTP GET—

Own public key

requested
random bytes

e ———— e — ——— Hetum-—————— e ——

<response>
<entropy:
encrypted
base64-encoded
</entropy:
<timestamps</timestamp>
<dsig> </dsig>
</response>

NIST

National Institute of
- Standards and Technology
. ~ U.S. Department of Commerce

EaaS client usage model

Loca f(xo...Xn)

Entropy
XO otherinf] DRBG N';::s
Eaa$; |_Data
:> X 1 u Bk >-3eed

D x client EaaS access key

f: a hash function; EaaS, ... EaaS_: independent EaaS instances providing data for computing

u.,.-= f(xo... xn), where X,1<i<n,is data obtained from the Eaa$, instance using the client
EaaS access key; Note, there is one client access key for accessing all EaaS. instances.

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

S nOte on XOR miXing

Eaa$ Entropy

-

Output Seed

64-bits 0's 64-bits O's 64-bits O's

Local Entropy

1% Adishonest Eaa$ instance may gain insight into the output seed

@ if different size buffers are padded and XoR-ed.

NIST

National Institute of

Standards and Technology
U.S. Department of Commerce

Local Entropy EaaS Entropy

SHA-256

1 Output Seed

Safe and simple

Client EaaS access key
management protocol

Loca f(xg...Xn)

Entropn
XO Other info DRBG Keys,

Nonces,

Data

Eaa$; J —

UOut }

J-round B
! i
‘._r_
[

Protocol sketch for
— managing Eaa$
Initial key for accessing Eaa$, provisioned out-of-band (factory, enterprise, etc.) access keys With
”°“”d Perfect Forward

= KDF (DRE-G(Seet:IH)); Seed™ = Uy = fxy X2 L X,); % ,1<2i=n,denotes data
obtained from the EaaS; instance using the (J-1)-round client Eaa$ access key; KDF

denotes an appropriate procedure for asymmetric key generation, cf. SP 800-133. S e C re Cy (P F S)

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

Linux Kernel Revisited

Instrumented to access EaaS and seed local

entropy pool!

C program, using
“RNDADDENTROPY
ioctl to add
entropy.

Entropy Estimate

in bits

Kernel Entropy Pool Size Estimate

Jproc/sys/kernel/random/entropy_avail

Kermel Process Scheduler
Blocking Request

900

BOO S
| Plot Area

700

Kernel Process Scheduler
Blocking Request

300
Request Blocked
200

H MmN~ AN~ oM L O BT, B - TR ST, T -) U T O . T BT - W e h o= W P o M
B I I IS R I S S M M B P R R v R P S S SO S Rl S i R
Seconds Since Boot
—Rase 4 2 3 e iU INPUE Minus_Interrupt

Minus_Device e VHiN1LES_Device_ared_|nput s [VIiNUS_Device_Input_Interrupt

—— Al|_Disabled_1000_Seed —fase 4 2 3 1000_Seed ssesss 112 Bits

oMo Mo P o
hoooo &t o o =~
o o e oo e

NIST

National Institute of

Standards and Technology
U.S. Department of Commerce

erprise key strength

attestation
. . \

= .- = - -

@ AV ANENE (I Application Mumber of events: 42 290
: -F Custom Views

N
i

B

Level Date and Time f Eaa?

4 |.. Windows Logs

i Application ||| (i) Information 5/9/2016 7:01:06 PM _ o J
£ Setup (i) Information 5/9/2016 6:53:07 PM : —_— — . N
is] System (i) Information 5/9/2016 6:49:45 PM E —

Information 5/9/2016 6:49:45 PM

& Forwarded Eve| || (7
1) 5/9,/2016 6:49:45 PM

4 Ef:AppIicationsandE 6

=

i) Information

§:| Actividentity
£ Hardware Ever
£ Internet Explor
é,—-_| Key Managem

. 1 Microsoft

=] Microsoft Offic
Mirrnznft-S0H

JInformation

L1 Information
¥ Error

1 Warninn

5/9/2016 6:49:45 PM
5/9/2016 6:49:26 PM
5/9/2016 6:43:52 PM
5992 6 6:37:32 PM

Event 234, Key Strength Attestation

General |Detai|s

Eaa5 Entropy Successfully Received and Stirred into TPM Pool.
Asserting Key Strengths Of Up To 256 bits,
Source Authentication Ticket-Digest: 42-A8-27-44-B3-92-CB-63-24-61 -A5-4A-2E-99-74-83-TF-15-C5-20-BE-60-8F-9A-34-26-6B-32-BF-73-63-D7
RMG Health Check Nonce: E4-86-64-A7-7C-23-9C-F4-5E-46-C0-A1-E0-4F-95-43-24-E5-C9-79-9B-43-78-9B-D5-D3-B9-E9-F9-C9-81-C1

Potential attacks and mitigation(

Standard attacks on web service and protocol
. Message replay

» Man-In-The-Middle

- DNS poisoning

Protocol features and out-of-band provisioning
mitigate these attacks

gst-related attacks and
mitigation

EaaS-specific attacks on the web service
- Honest-but-curious EaaS instance

- Dishonest-but-non-colluding EaaS
instances

- Dishonest-and-co WM. €s

EaaS ecosystem

Image Courtesy: Cornell Univ. Networks Course Blog ™ i g P
https://blogs.cornell.edu/info2040/2012/09/26/7720/ T el P

.

Status and next steps

See project page at : http://csrc.nist.
gov/projects/eaas/

Now: Functional prototype implemented; demoed at
CIF 2015 in Washington, DC
DRBG Workshop 2016, NIST

Mext:
Sétand—up publicly accessible NIST EaaS in Q2,
01
publish client and server sample code on GitHub

Questions?

