

Entropy as a Service

Unlocking the full potential of cryptography

Apostol Vassilev Robert Staples

ICMC, May, 2016, Ottawa

A perspective

Cryptography enjoys a Renaissance period of increasingly fast evolution

• IoT and PQC are the next big frontiers

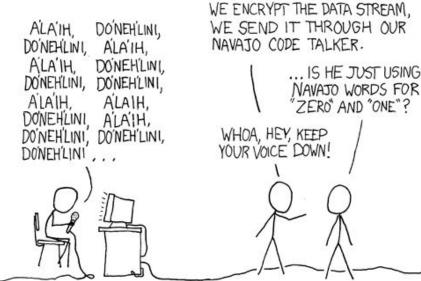
Emerging crypto technologies abound

- lightweight crypto
- lighter versions of legacy protocols
 - tinyDTLS, lightweight DTLS

Post-Quantum Cryptography (PQC)

New crypto is cool but have we solved all problems with conventional cryptography?

FOR ADDED SECURITY, AFTER


Observation

In modern cryptography the algorithms are known

Key generation and main strengt and security of

Key generation is stron dependent on entropy

The elephant in the room

Where are the keys coming from?

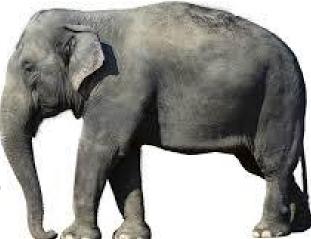


Image Courtesy: Web

Real World Examples 2013

"Factoring RSA keys from certified smart cards (Coppersmith in the wild)",

Bernstein, Chang, Cheng, Chou, Heninger,

Lange, van Someren

Likely reasons for using this weak design: <u>cost</u> of high-quality hardware, cost of licensing patents

Real World Examples 2012

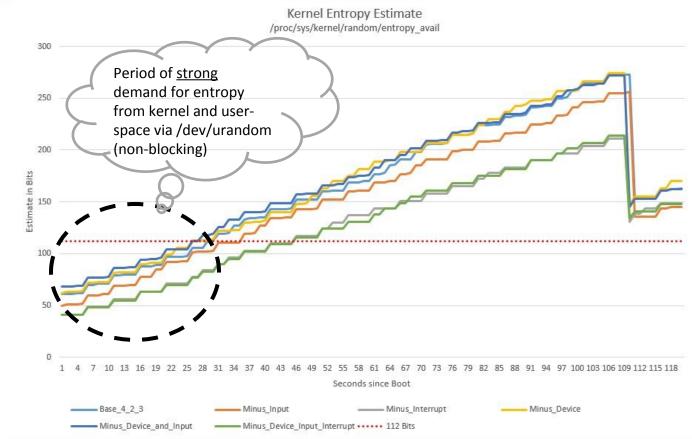
"Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices"

Heninger, Durumeric,

Wustrow, Halderman

Scanned 28 Mil TLS and 23 Mil SSH hosts on the Internet

- 0.75% of TLS certificates share keys
 - due to insufficient entropy during key generation
 - another 1.70% come from same faulty implementations
- 0.50% of TLS hosts and 0.03% of SSH hosts revealed RSA private keys
 - public keys shared nontrivial common factors due to entropy problems



Real World Examples 2016

The Linux kernel dissected – four sources of entropy

- Device
- Input
- Interrupt
- Disk

"minimal" (no GUI) Ubuntu Server v14.04.3 64-bit w/ Kernel v4.2.3

Testing randomness is hard

Using a finite set of statistical tests on data samples can lead to misleading results

<u>Example 1</u>: expand a well-known irrational number, e.g. π , and test the output bit sequence for randomness – it will be reported as random.

<u>Example 2</u>: challenges in hardware-based sources of randomness – see "Sources of Randomness in Digital Devices and Their Testability"

Viktor Fischer, Univ Lyon, UJM-Saint-Etienne, Laboratoire Hubert Curien; NIST DRBG Workshop 2016 http://csrc.nist.gov/groups/ST/rbg-workshop-2016/presentations/SessionVI-2-viktor-fischerpresentation.pdf

Using the statistical test approach of **SP 800-90B** makes it hard to automate the estimation of entropy automation is <u>critically</u> important for the new CMVP @ NIST

Our approach

How about delivering high-entropy random data from a provably good source to needy clients?

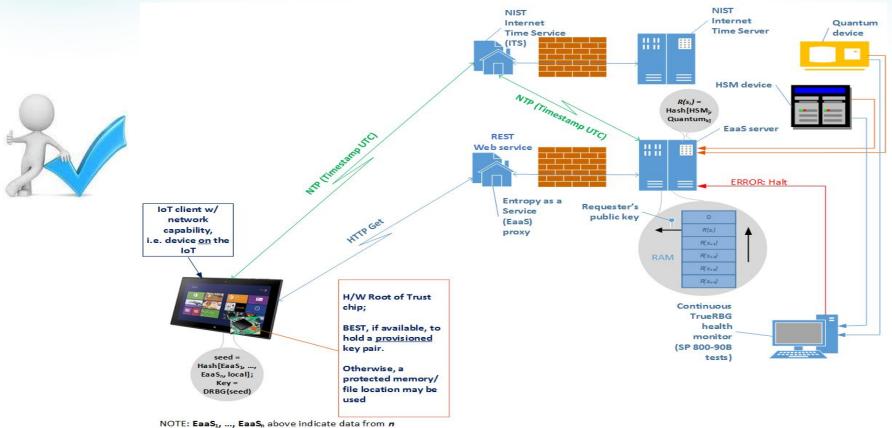
Public service providing high-entropy random data for use in cryptography **Entropy as a Service (EaaS)**

delivers entropy securely (no one can see)
 upon request from clients

Our solution is

Not a key generation service

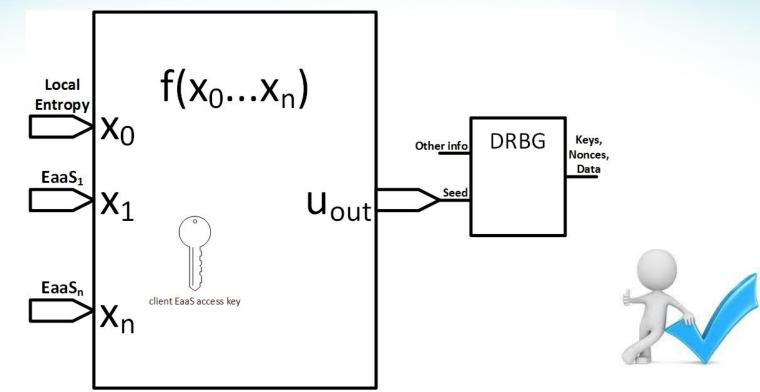
 cryptographic keys are generated locally on the client using DRBG's


Not similar to the NIST beacon

- EaaS does not record incoming or outgoing requests
- EaaS does not record generated entropy

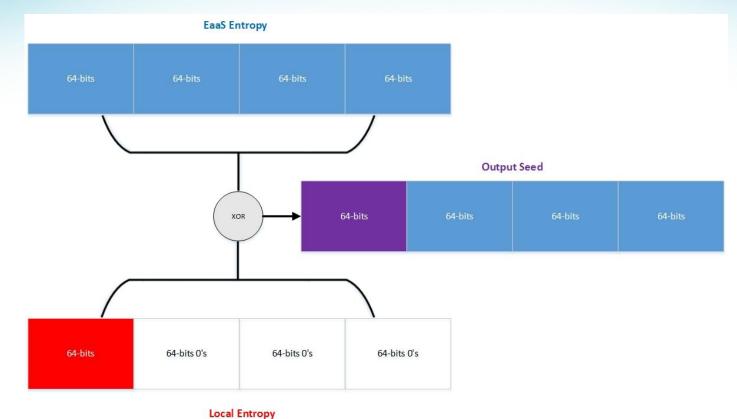
EaaS architecture

different EaaS server instances; local indicates locally available random data, if any


A protocol sketch

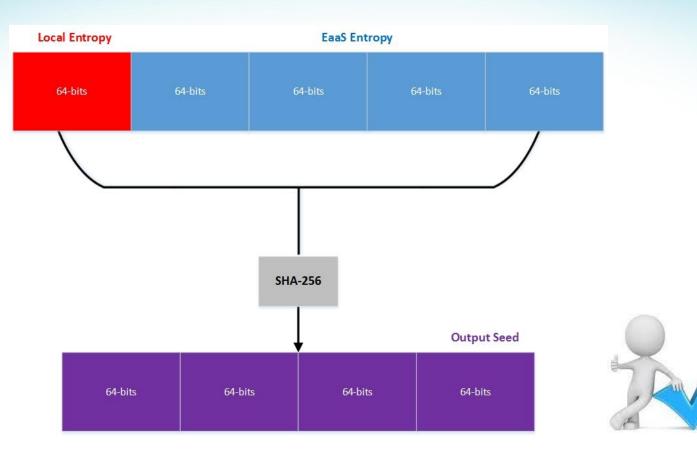
Client	EaaS
Own public key # requested random bytes	HTTP GET
<	<response> <entropy> encrypted base64-encoded </entropy> <timestamp></timestamp> <dsig></dsig> </response>

EaaS client usage model



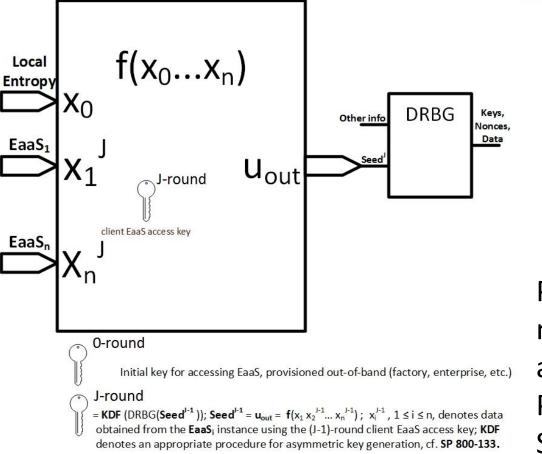
f: a hash function; $\mathbf{EaaS}_1 \dots \mathbf{EaaS}_n$: independent EaaS instances providing data for computing $\mathbf{U}_{out} = \mathbf{f}(\mathbf{x}_0 \dots \mathbf{x}_n)$, where $\mathbf{x}_i, 1 \le i \le n$, is data obtained from the \mathbf{EaaS}_i instance using the client EaaS access key; Note, there is <u>one</u> client access key for accessing all \mathbf{EaaS}_i instances.

A note on XoR mixing



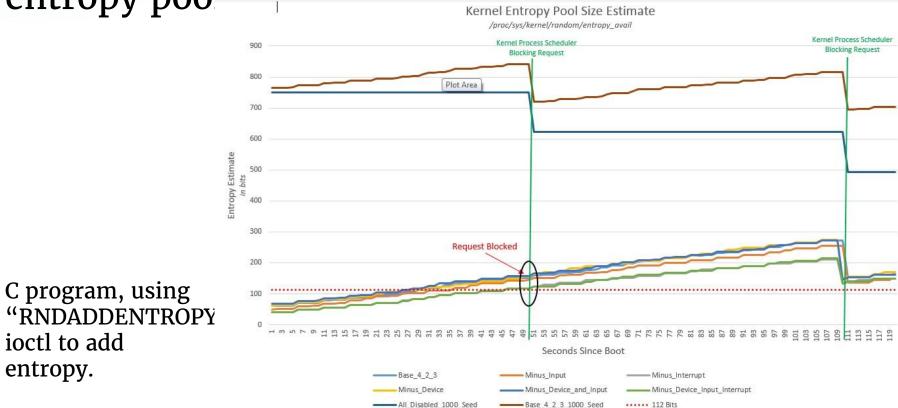
A dishonest EaaS instance may gain insight into the output seed if different size buffers are padded and XoR-ed.

Hash-based mixing



Safe and simple

Client EaaS access key management protocol


Protocol sketch for managing EaaS access keys with Perfect Forward Secrecy (PFS)

Linux Kernel Revisited

Instrumented to access EaaS and seed local entropy pool

Enterprise key strength attestation

				1	JU .
To and Manager (Langer)			5		
Event Viewer (Local) Gustom Views	Application Number of events: 42,29	90			
Windows Logs	Level	Date and Time	(EaaS	
Application	(i) Information	5/9/2016 7:01:06 PM		Luus	
Security	Information	5/9/2016 7:00:55 PM			
Setup	(i) Information	5/9/2016 6:53:07 PM	and the second second	-	~~~
😭 System	(i) Information	5/9/2016 6:49:45 PM			- Aller
Forwarded Eve	(i) Information	5/9/2016 6:49:45 PM		T	
A Pplications and S	(i) Information	5/9/2016 6:49:45 PM			
😭 ActivIdentity	(i) Information	5/9/2016 6:49:45 PM			
😭 Hardware Ever	(i) Information	5/9/2016 6:49:26 PM			
📔 Internet Explor	• Error	5/9/2016 6:43:52 PM			
😭 Key Managem	A Warning	5/9/2016 6:37:32 PM	_		
Microsoft	Event 234, Key Strength Attestation				
Microsoft Offic	General Details				
200		256 bits. est: 42-A8-27-44-B3-92-CB	ol. 8-63-24-61-A5-4A-2E-99-74-83-7F-15-C5-2 -C0-A1-E0- <mark>4</mark> F-95-49-24-E5-C9-79-9B-43-78		

Potential attacks and mitigation

Standard attacks on web service and protocol

- Message replay
- Man–In–The–Middle
- DNS poisoning

Protocol features and out-of-band provisioning mitigate these attacks

es

Trust-related attacks and mitigation

EaaS-specific attacks on the web service

- Honest-but-curious EaaS instance
- Dishonest-but-non-colluding EaaS instances
- Dishonest-and-col

EaaS ecosystem

Image Courtesy: Cornell Univ. Networks Course Blog https://blogs.cornell.edu/info2040/2012/09/26/7720/

Status and next steps

See project page at : http://csrc.nist. gov/projects/eaas/

<u>Now</u>: Functional prototype implemented; demoed at CIF 2015 in Washington, DC DRBG Workshop 2016, NIST

Stand-up publicly accessible NIST EaaS in Q2, 016 publish client and server sample code on GitHub

Questions?