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   1.1 Introduction to AES  

! Ref: “The Design of Rijndael” (Joan Daemen and Vincent Rijmen) – Springer 2002 

! Rijndael announced as the winner of the AES competition in October 2000 
–  Designed by Rijmen and Daemen 

! AES is a symmetric cipher 
–  Blocksize is 128 bits viewed as a 4 by 4 matrix of bytes 
–  Keys are 128, 192 or 256 bits 

! In this talk we concentrate on AES-128 with 128 bit key 

! AES-128 has 10 rounds 

! AES-192 has 12 rounds 

! AES-256 has 14 rounds 

! The 128, 192 or 256 bit key is expanded to provide enough key bits to encrypt each round 
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   1.2 AES-128 Round Structure 

!  AES-128 works on a State that is 4 by 4 matrix of 8 bit bytes 

! AES(State, CipherKey) 

    { 

      KeyExpansion(CipherKey, ExpandedKey) 
  AddRoundKey(State, ExpandedKey[0]) 
  for i=1:9 
       Round(State,ExpandedKey[i]) 
   end 
   FinalRound(State, ExpandedKey[10]) 

     } 



4 

   1.3 AES-128 Round Structure  

!   
Round(State, ExpandedKey[i]) 
{ 
Subbytes(State) 
ShiftRows(State) 
MixColumns(State) 
AddRoundey(State, ExpandedKey[i] 
} 
 
FinalRound(State, ExpandedKey[i]) 
{ 
SubBytes(State) 
ShiftRows(State) 
AddRoundKey(State, ExpandedKey[i]) 
} 
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   1.4 AES-128 Round Structure - SubBytes 

! SubBytes: 𝑎→​𝑓(𝑎↑−1 )=b  
find inverse of a in 𝐺𝐹( ​2↑8 ) followed by an affine transformation f 
An affine transformation is a linear mixing and shift of the bits of ​𝑎↑−1  

! Note 1: SubBytes is the only non-linear part of AES and operates on each byte individually 

! Note 2: XOR is a linear function in 𝐺𝐹(2)  𝑎𝑛𝑑  𝐺𝐹( ​2↑8 ) which  is defined by the irreducible 
polynomial 𝑚(𝑥)= ​𝑥↑8 + ​𝑥↑4 + ​𝑥↑3 +𝑥+1 

a     b 

SubBytes 
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  1.5 AES-128 Round Structure – SubBytes (Contd) 

! SubBytes Affine Transformation 

! [█■█■█■1&1@0&1 &█■1&1@1&1 @█■0&0@0&0 &█■1&1@0&1  &█■█■1&0@1&1 &█■0&0@0&0 
@█■1&1@1&1 &█■1&0@1&1  @█■█■1&0@1&1 &█■0&0@0&0 @█■1&1@1&1 &█■1&0@1&1  
&█■█■1&1@0&1 &█■1&1@1&1 @█■0&0@0&0 &█■1&1@0&1   ][█■█■█■𝑎7@𝑎6 @█■𝑎5@𝑎4  
@█■█■𝑎3@𝑎2 @█■𝑎1@𝑎0   ]+[█■█■█■0@1 @█■1@0  @█■█■0@0 @█■1@1   ]=[█■█■█■𝑏7@𝑏6 
@█■𝑏5@𝑏4  @█■█■𝑏3@𝑏2 @█■𝑏1@𝑏0   ] 
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   1.6 AES-128 Round Structure - ShiftRows 

 

a0 b0 c0 d0 

a1 b1 c1 d1 

a2 b2 c2 d2 

a3 b3 c3 d3 

a0 b0 c0 d0 

b1 c1 d1 a1 

c2 d2 a2 b2 

d3 a3 b3 c3 

ShiftRows 

Row 0 is not shifted 
Row 1 is circularly left shifted by 1 
Row 2 is circularly left shifted by 2 
Row 3 is circularly left shifted by 3 
Note: ShiftRows preserves the XOR of the row bytes and the total XOR of all the bytes 
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   1.7 AES-128 Round Structure - MixColumns 

a0 b0 c0 d0 

a1 b1 c1 d1 

a2 b2 c2 d2 

a3 b3 c3 d3 

A0 B0 C0 D0 

A1 B1 C1 D1 

A2 B2 C2 D2 

A3 B3 C3 D3 

MixColumns 

(█■█■2&3@1&2 &█■1&1@3&1 @█■1&1@3&1 

&█■2&3@1&2  )(█■█■𝑎0@𝑎1 @█■𝑎2@𝑎3  )=(█■█■𝐴0@𝐴1 
@█■𝐴2@𝐴3  ) 

Addition is performed over 𝐺𝐹(2)  
Multiplication over 𝐺𝐹( ​2↑8 )  
Note: MixColumns preserves the XOR of the columns and the total XOR of all the bytes 
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   1.8 Key Expansion  

! Ref: “Analysis of Block Cipher Constructions against Biclique and Multiset Attacks”, PhD 
Thesis by Mohona Ghosh, 2016  

! Key Expansion of AES-128 (example) 

! Begin with 128 bit key prepared as 4x4 byte state array 

! Form 4 32-bit words from the columns. Iterate key schedule to obtain enough key for each of 
the rounds 
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  2.1 Design Principles of AES – Linear Cryptanalysis 

!  Linear Cryptanalysis: Correlations and Linear Trails 

!  The correlation between two Boolean functions f and g is  

!  𝐶(𝑓,𝑔)=2.𝑃𝑟𝑜𝑏(𝑓(𝑎)=𝑔(𝑎))−1 

! −1≤𝐶(𝑓,𝑔)≤1 

! A parity function is the XOR of a number of bits 

! Given a non-linear function S we can calculate the correlation of a parity function to it 

! SubBytes() has been chosen such that the maximum correlation of a parity function is ​2↑−3  

! Given a sequence of rounds we can identify a corresponding linear trail through it which is a 
sequence of parity functions. We multiply the corresponding correlations of the parity functions 
to get the correlation of the linear trail. For AES, this gives the maximum of​  2↑−75  for the 
correlation for any four round linear trail. 
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 2.2 Design Principles of AES – Differential Cryptanalysis 

!  Differential Cryptanalysis: Consider two n bit vectors 𝑎 and ​𝑎↑∗  where 𝑎+ ​𝑎↑∗ = ​𝑎↑′   a fixed 
difference pattern. 

!  Let 𝑏=ℎ(𝑎),   ​𝑏↑∗ =ℎ(​𝑎↑∗ ) and 𝑏+ ​𝑏↑∗ = ​𝑏↑′  the difference ​𝑎↑′  propagates to the difference ​𝑏↑′ . 

!  The difference propagation probability is 
𝑃𝑟𝑜𝑏(​𝑎↑′ , ​𝑏↑′ )= ​2↑−𝑛 ∑𝑎↑▒δ( ​𝑏↑′ +ℎ(​𝑎+𝑎↑′ )+ℎ(𝑎))  

! The weight of a difference propagation is 𝑤(​𝑎↑′ , ​𝑏↑′ )=− ​𝑙𝑜𝑔↓2 (𝑃𝑟𝑜𝑏(​𝑎↑′ , ​𝑏↑′ )) 

! A differential trail is a sequence of difference patterns: 
D=(​𝑑↑0 , ​𝑑↑1 , ​𝑑↑2 ,…​𝑑↑𝑟−1 , ​𝑑↑𝑟 ) 
The weight of a differential trail is the sum of the weights its differential steps 
𝑤(𝐷)=𝑤(​𝑑↑0 , ​𝑑↑1 )+𝑤(​𝑑↑1 , ​𝑑↑2 )+…𝑤( ​𝑑↑𝑟−1 , ​𝑑↑𝑟 ) 
SubBytes has a differential weight of at least 6 meaning a differential propagation probability of 
at least ​2↑−6 . This gives a minimum weight of 150 for any four round differential trail. 
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   2.3 Design Principles of AES  

!   Results 

!  1. There are no 8 round correlations above ​2↑−80  

!  2. There are no 8 round differential trails with a weight below 300 

!  “We consider this sufficient to resist differential and linear attacks” (designers of Rijndael) 
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   2.4 AES - Square Attack – 3 Round Property  

!  Square Attack (aka Saturation Attack, Integral Attack, Partial Sums) – Chosen Plaintext attack 
originally identified by the designers of AES and improved upon since then (Ferguson et al 
2000). We first describe a 3-round property. (Ref Gosh PhD Thesis) 

!  We input ​2↑8  plaintexts which are all 0 except for the first byte which varies over all ​2↑8  
values. We track the XOR of the bytes at each byte position through 3 rounds of AES. The 
XOR of the bytes is 0 at every byte position through 3 rounds. X means byte position is active. 

X X X 
X 

X 

X 

X 
X 

X 

X 

Round 1 
Input ​2↑8  plaintexts 

First step is AddRoundKey (not shown) 

SubBytes ShiftRows MixColumns AddRoundKey 
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   2.5 AES - Square Attack – 3 Round Property  

!  Turns out the property of XOR byte positions = 0 goes through to 3 rounds by analyzing the 
properties of AES’s third round application of the linear function MixColumns (next slide) 

X 
X 

X 

X 

X 
X 

X 

X 

X X X X 
X X X X 

X X X X 

X X X X 

X X X X 
X X X X 

X X X X 

X X X X 

Round 2 
Tracking Active Byte Positions 

SubBytes ShiftRows MixColumns AddRoundKey 
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   2.5 AES - Square Attack – 3 Round Property  

 

Let ​𝑦↓0  be the first byte value after applying the MixColumns operation to the first column 

X X X X 
X X X X 

X X X X 

X X X X 

​
𝑥↓
0  

X X X 

​
𝑥↓
1  

X X X 

​
𝑥↓
2  

X X X 

​
𝑥↓
3  

X X X 

​
𝑦↓
0  

Round 3 
Tracking Active Byte Positions 

SubBytes ShiftRows MixColumns AddRoundKey 
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   2.6 AES - Square Attack – 4 Round Property  

!  We can extend this to a 4-round property by using ​2↑32  plaintexts where the 4 active bytes 
vary over all possible ​2↑32  byte combinations   

!  At the end of 4-rounds the XOR of the bytes at each byte position is still 0 

!  We can add a key assumption at rounds 5 and 6 to get a 6 round attack – work factor ​2↑44  
an improvement due to Ferguson et. al. 2001 from the original ​2↑72  

X 
X 

X 

X 

X 
X 

X 

X 

X 
X 

X 

X 

X 
X 

X 

X 

4-Round Property 
Add New First Round ​2↑32  Plaintexts at Beginning of 3-Round Property 

SubBytes ShiftRows MixColumns AddRoundKey 
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   2.7 AES - Square Attack   
! Ref: “Improved “Partial Sums” – based Square Attack on AES”, Tunstall (2012) 

 

 

 

 

 

 

Ref: “Implementation and Improvement of the Partial Sum Attack on 6-round AES”, Alda, 
Aragona, Nicolodi, Sala (2014) 

!    

!    
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   2.8 Full AES - Biclique Attack   

!  Ref: Analysis of Block Cipher Constructions against Biclique and Multiset Attacks, PhD Thesis 
by Mohona Ghosh, 2016 

!   Summary: Key recovery with bicliques for full AES. CC=Chosen Ciphertext, CP=Chosen 
Plaintext 
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  3.1 Quantum Cryptanalysis of AES 

! Ref: “Applying Grover’s algorithm to AES: quantum resource estimates”, Grassl, Langenberg, 
Roetteler, Steinwandt Quant-ph 1512.04965 15 December, 2015  

! Problem: Given AES-128 and 3 plaintext/ciphertext pairs, find the secret key K 

! Solution (roughly):  
–  Step 1: | ​ψ↓1 >  =   ​1/√⁠​2↑128   ∑↑▒|𝐾>|0>       uniform superposition of all ​2↑128  keys 
–  Step 2: | ​ψ↓2 >  =   ​1/√⁠​2↑128   ∑↑▒|𝐾>| ​𝐴𝐸𝑆↓𝑘 (𝑚)>       computation of AES with key K to 

plaintext m 
–  Step 3: | ​ψ↓2 >  =   ​1/√⁠​2↑128   ∑↑▒|𝐾>| ​𝐴𝐸𝑆↓𝑘 (𝑚)= ​𝑐↓𝑚   >       test equality with known 

ciphertext ​𝑐↓𝑚  
–  Step 4: apply Grover’s algorithm to find which key K gives the equality value 1 versus the 

inequality value 0 

! Main costs: Computation of AES, Computation of Grover’s algorithm 



20 

  3.2 Quantum Cryptanalysis of AES (Contd) 

! Ref: “Applying Grover’s algorithm to AES: quantum resource estimates”, Grassl, Langenberg, Roetteler, 
Steinwandt Quant-ph 1512.04965 15 December, 2015  

! Grover’s Cost (well known): 
–  To find 1 item in an N long list costs 𝑂(√⁠𝑁 ).   Here 𝑁= ​2↑128 , ​2↑192 , ​2↑256  

! AES-k cost (Note quantum circuits are fully reversible) 
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  3.3 Quantum Cryptanalysis of AES (Contd) 

! Ref: “Applying Grover’s algorithm to AES: quantum resource estimates”, Grassl, Langenberg, Roetteler, 
Steinwandt Quant-ph 1512.04965 15 December, 2015  
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  3.4 Quantum Cryptanalysis of AES (Contd) 

! Ref: “Applying Grover’s algorithm to AES: quantum resource estimates”, Grassl, Langenberg, Roetteler, 
Steinwandt Quant-ph 1512.04965 15 December, 2015  

! : 
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  3.5 Quantum Cryptanalysis of AES (Contd) 

! Ref: “Applying Grover’s algorithm to AES: quantum resource estimates”, Grassl, Langenberg, Roetteler, 
Steinwandt Quant-ph 1512.04965 15 December, 2015  

! : 
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  3.6 Quantum Differential and Linear Cryptanalysis 

! Ref: “Quantum Differential and Linear Cryptanalysis”, Kaplan, Leurent, Leverrier, Naya-
Plasencia (2017) 

! The authors examine differential and linear cryptanalysis in two settings defined as follows 
(PRP = Pseudo Random Permutation 
 PRF = Pseudo Random Function) 

! Standard security: a block cipher is standard secure against quantum adversaries if no 
efficient quantum algorithm can distinguish the block cipher from PRP (or a PRF) by making 
only classical queries (Q1) (i.e. can make classical encryption queries) 

! Quantum security: a block cipher is quantum secure against quantum adversaries if no 
efficient quantum algorithm can distinguish the block cipher from PRP (or a PRF) even by 
making quantum queries (Q2) (i.e. can make quantum encryption queries) 
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  3.7 Quantum Differential and Linear Cryptanalysis 

! Ref: “Quantum Differential and Linear Cryptanalysis”, Kaplan, Leurent, Leverrier, Naya-
Plasencia (2017) 

! Results: 

! Differential cryptanalysis and linear cryptanalysis usually offer a quadratic gain in the Q2 model 
over the classical model. 
–  If a block cipher is resistant to a classical linear or differential cryptanalysis attack costing at 

least ​2↑𝑘  then it is also resistant the corresponding quantum linear or differential 
cryptanalysis attacks cost at least ​2↑𝑘/2  

! In the Q1 model cryptanalytic attacks might offer little gain over the classical model when the 
key-length is the same as the block length (e.g. AES-128) 

! The gain of cryptanalytic attacks in the Q1 model can be quite significant (similar to the Q2 
model) when the key length is longer (e.g. AES-256) than the block length 
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  3.8 Breaking Symmetric Cryptosystems using  
       Quantum Period Finding 

! Ref: “Breaking Symmetric Cryptosystems using Quantum Period Finding”, Kaplan, Leurent, 
Leverrier, Naya-Plasencia (2016) 

! Results: CBC-MAC, GMAC, GCM and PMAC, OCB are all broken by forgery attacks using  
their method 

! The author’s take advantage of Simon’s problem and algorithm: 

! Note: Simon’s algorithm (next slide) was one of the first to show exponential speedup of a 
quantum algorithm. 
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  3.9 Breaking Symmetric Cryptosystems using  
       Quantum Period Finding 

! Ref: “Breaking Symmetric Cryptosystems using Quantum Period Finding”, Kaplan, Leurent, 
Leverrier, Naya-Plasencia (2016) 

! Simon’s Problem can be solved using Simon’s Algorithm which is repeated O(n) times 
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  3.10 Breaking Symmetric Cryptosystems using  
       Quantum Period Finding 

! Ref: “Breaking Symmetric Cryptosystems using Quantum Period Finding”, Kaplan, Leurent, 
Leverrier, Naya-Plasencia (2016) 

! Example: CBC-MAC 

 

! Fix two arbitrary message blocks                              define the function f: 

! Note: Assumption is that we have quantum access to CBC-MAC using​  𝐸↓𝑘   𝑎𝑛𝑑   ​𝐸↓​𝑘↑′     
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  3.11 Breaking Symmetric Cryptosystems using  
       Quantum Period Finding 

! Ref: “Breaking Symmetric Cryptosystems using Quantum Period Finding”, Kaplan, Leurent, 
Leverrier, Naya-Plasencia (2016) 

! Example: CBC-MAC 

! Simon’s algorithm returns “s” which is defined as: 

! 𝐶𝐵𝐶−𝑀𝐴𝐶( ​α↓   ||𝑚)= ​𝐸↓​𝑘↑′  ( ​𝐸↓𝑘 (​𝐸↓𝑘 (α)⊕𝑚)) 

! Let ​𝑇↓0 =𝐶𝐵𝐶−𝑀𝐴𝐶( ​α↓0   ||​𝑚↓1 )  for an arbitrary message block ​𝑚↓1  

! Let ​𝑇↓1 =𝐶𝐵𝐶−𝑀𝐴𝐶( ​α↓1   ||​𝑚↓1 ⊕ ​𝐸↓𝑘 (​α↓0   )⊕ ​𝐸↓𝑘 (​α↓1   )) 

! Then ​𝑇↓0 =​𝑇↓1  (i.e. a forgery) since we know ​𝐸↓𝑘 (​α↓0   )⊕ ​𝐸↓𝑘 (​α↓1   ) 
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    5. Questions? 
 

! Contact Information: 
David Cornwell, PhD 
Cornwell_david@bah.com 
 
(410) 684 6579 
 
Address: 
Booz Allen Hamilton 
304 Sentinel Drive (NBP) 
Annapolis Junction 
MD 20701 
USA 


