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1.1 Introduction to AES

» Ref: “The Design of Rijndael” (Joan Daemen and Vincent Rijmen) — Springer 2002

» Rijndael announced as the winner of the AES competition in October 2000
— Designed by Rijmen and Daemen

» AES is a symmetric cipher
— Blocksize is 128 bits viewed as a 4 by 4 matrix of bytes
— Keys are 128, 192 or 256 bits

» In this talk we concentrate on AES-128 with 128 bit key
» AES-128 has 10 rounds
» AES-192 has 12 rounds
» AES-256 has 14 rounds

» The 128, 192 or 256 bit key is expanded to provide enough key bits to encrypt each round
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1.2 AES-128 Round Structure

» AES-128 works on a State that is 4 by 4 matrix of 8 bit bytes

» AES(State, CipherKey)

{

KeyExpansion(CipherKey, ExpandedKey)
AddRoundKey(State, ExpandedKey[0])
fori=1:9

Round(State,ExpandedKeyl[i])
end
FinalRound(State, ExpandedKey[10])

Booz | Allen | Hamilton

3



1.3 AES-128 Round Structure

Round(State, ExpandedKey(i])

{

Subbytes(State)

ShiftRows(State)
MixColumns(State)
AddRoundey(State, ExpandedKeyyi]

}

FinalRound(State, ExpandedKey]i])

{

SubBytes(State)

ShiftRows(State)
AddRoundKey(State, ExpandedKeyii])
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1.4 AES-128 Round Structure - SubBytes

SubBytes

» SubBytes: a— f(aT—1)=b
find inverse of a in ¢#(278) followed by an affine transformation f
An affine transformation is a linear mixing and shift of the bits of a7—1

» Note 1: SubBytes is the only non-linear part of AES and operates on each byte individually

» Note 2: XOR is a linear function in ¢#(2) and GF(278) which is defined by the irreducible
polynomial 72(x)=x78 +xT4 +x73 +x+1

Booz | Allen | Hamilton

5



1.5 AES-128 Round Structure — SubBytes (Contd)

» SubBytes Affine Transformation

» [NENIE1@0&] &N &1 @1&1 @E0&0@0&0 &M1& @0&1 SENLE0@1&1 &M0&0 @0&0
CNL& @1&]1 &M @1&]1 @HE1&0@1&1 &E0&0 @0&0 @M1 &1 @1&1 &M &0@1&1
SENI& @081 &M1& @1&]1 @E0& @0&0 &M &1 @0&1 |[MEMa @ab @Ma5 @ah
@ENB@2 @lal @20 [+[HEN0@] @N1@0 @EE)Q0 EE @] |=[HEEY] @b6
@EL5 @04 @EEL@L2 @EHL@H0 |
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1.6 AES-128 Round Structure - ShiftRows

a0 (b0 (cO |dO ShiftRows |a0 |[b0 |[cO |dO
al |b1 |c1 |d1 b1 |c1 |d1 |af
a2 |b2 |[c2 |d2 ; c2 |d2 |a2 |b2
a3 |b3 |[c3 |d3 d3 |(a3 |b3 |c3

Row 0 is not shifted

Row 1 is circularly left shifted by 1

Row 2 is circularly left shifted by 2

Row 3 is circularly left shifted by 3

Note: ShiftRows preserves the XOR of the row bytes and the total XOR of all the bytes
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1.7 AES-128 Round Structure - MixColumns

a0 |[bO0 |[cO |dO MixColumns [A0 |BO |[CO |DO

a1 b1 lc1 |d1 A1 [B1 |c1 |D1
a2 |b2 |2 |d2 a2 |B2 |c2 |D2
a3 b3 |c3 |d3 A3 |B3 |c3 |D3

(N &3@1&2 & &1 @3&1 @ &1 @3 &1

&M &3 @182 )(HM0@al @Ma2@a3 )= (MEA0@A1
@EA2@A43 )

Addition is performed over ¢#2)
Multiplication over ¢#@21s)
Note: MixColumns preserves the XOR of the columns and the total XOR of all the bytes
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1.8 Key Expansion

» Ref: “Analysis of Block Cipher Constructions against Biclique and Multiset Attacks”, PhD
Thesis by Mohona Ghosh, 2016

» Key Expansion of AES-128 (example)
» Begin with 128 bit key prepared as 4x4 byte state array

» Form 4 32-bit words from the columns. Iterate key schedule to obtain enough key for each of
the rounds K

ko | By |kg |Ria

ky | kg | kg |kyg

kg | Fg |kpofkiq

ke | by |kyglkis

Lo B el L] _'-{'\.3

AN

Wy WH| W | =y
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2.1 Design Principles of AES — Linear Cryptanalysis

» Linear Cryptanalysis: Correlations and Linear Trails

» The correlation between two Boolean functions f and g is

» C(f.g)=2.Prob(f(a)=g(a))-1

y —1<50(f,9)<1

» A parity function is the XOR of a number of bits

» Given a non-linear function S we can calculate the correlation of a parity function to it

» SubBytes() has been chosen such that the maximum correlation of a parity function is 27-3

» Given a sequence of rounds we can identify a corresponding linear trail through it which is a
sequence of parity functions. We multiply the corresponding correlations of the parity functions

to get the correlation of the linear trail. For AES, this gives the maximum of 27—75 for the
correlation for any four round linear trail.
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2.2 Design Principles of AES — Differential Cryptanalysis

» Differential Cryptanalysis: Consider two n bit vectors @ and a7+ where a+al+ =al a fixed
difference pattern.

» Let b=A(a), bTx =A(alx ) and s+bT« =HT the difference al’ propagates to the difference 47 .

» The difference propagation probability is

» The weight of a difference propagation is w(al ,b6T )=—/logl2 (Prob(al ,bT ))

» A differential trail is a sequence of difference patterns:
D=(d10,d11,d12,..dTr—1,dTr)
The weight of a differential trail is the sum of the weights its differential steps
w(D)=w(d10,dT1 )+w(dT ,d72 )+..w(dTr—1,dTr)

SubBytes has a differential weight of at least 6 meaning a differential propagation probability of
at least 27—6 . This gives a minimum weight of 150 for any four round differential trail.
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2.3 Design Principles of AES

» Results

» 1. There are no 8 round correlations above 27—80

v

2. There are no 8 round differential trails with a weight below 300

v

“We consider this sufficient to resist differential and linear attacks” (designers of Rijndael)
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2.4 AES - Square Attack — 3 Round Property

» Square Attack (aka Saturation Attack, Integral Attack, Partial Sums) — Chosen Plaintext attack
originally identified by the designers of AES and improved upon since then (Ferguson et al
2000). We first describe a 3-round property. (Ref Gosh PhD Thesis)

» We input 278 plaintexts which are all 0 except for the first byte which varies over all 278
values. We track the XOR of the bytes at each byte position through 3 rounds of AES. The
XOR of the bytes is 0 at every byte position through 3 rounds. X means byte position is active.

HEEE OEEN (TEEE [IEEE
X X

X X
X X
SubBytes ShiftRows MixColumns AddRoundKey
Round 1

Input 278 plaintexts
First step is AddRoundKey (not shown)

Booz | Allen | Hamilton
13



2.5 AES - Square Attack — 3 Round Property

HEEE NN -I--
X X

X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

SubBytes ShiftRows MixColumns AddRoundKey
Round 2

Tracking Active Byte Positions

» Turns out the property of XOR byte positions = 0 goes through to 3 rounds by analyzing the
properties of AES’s third round application of the linear function MixColumns (next slide)
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2.5 AES - Square Attack — 3 Round Property

0 0
X X X

X X
X X X X 2l

X X X X

1
SubBytes ShiftRows MixColumns AddRoundKey
X X X
xd Round 3
2 Tracking Active Byte Positions
Let 40 be the first byte X X X jthe MixColumns operation to the first column
yh =02, - x5 ®03, - 1} Db B J
Yo DU B = 02, 25003, 2 BB 5B woud. . v = 02, P, - Prieo,. Preos P
02, - :r['] F 03, - :r: e ;3_‘.5 T .’.!';]5 T i=0 i=0 i=0 i=0
= 02,-00,q03,-00, 00,00,
- . N . = 00,
02, - 22 & 03, - 22 @ 23 @ a3
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2.6 AES - Square Attack — 4 Round Property

HEEE DEEE OEEE AEEE
X X X X

X X X X
X X X X

SubBytes ShiftRows MixColumns AddRoundKey

4-Round Property
Add New First Round 2732 Plaintexts at Beginning of 3-Round Property

» We can extend this to a 4-round property by using 2732 plaintexts where the 4 active bytes
vary over all possible 2732 byte combinations

» At the end of 4-rounds the XOR of the bytes at each byte position is still O

» We can add a key assumption at rounds 5 and 6 to get a 6 round attack — work factor 2744
an improvement due to Ferguson et. al. 2001 from the original 2772
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2.7 AES - Square Attack
» Ref: “Improved “Partial Sums” — based Square Attack on AES”, Tunstall (2012)

Rounds|Key Length|Memory| Acquisitions|Complexity
5] 5 generic 21! 210
This paper 5 128 28 238
This paper 5 192 2.98% 938.5
This paper 5 256 2. 98 939
[5] i generic 5. 2% 772
7] 6 generic 232 6. 2% 244
This paper 6 128 240 242 242
This paper 6 192 9 . 932 42,5
This paper 6 256 2. 2% 943
0] 7 102 772 772 oTTe
Ferguson et al. (7] T 192 232 19 . 2% 9185
This paper 7 192 9 . 932 o154
[10] 7 256 22 572 Rz
7] 7 ILE 932 91 . 932 0172
This paper 7 256 9 . 932 9171

Ref: “Implementation and Improvement of the Partial Sum Attack on 6-round AES”, Alda,
Aragona, Nicolodi, Sala (2014)

Number of A -sets | Average time (days) | Memory (GB)

3 11.5 1.542
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2.8 Full AES - Biclique Attack

» Ref: Analysis of Block Cipher Constructions against Biclique and Multiset Attacks, PhD Thesis
by Mohona Ghosh, 2016

» Summary: Key recovery with bicliques for full AES. CC=Chosen Ciphertext, CP=Chosen

Plaintext
Algorithm | Rounds Data Time Biclique length| Ref.
Complexity | Complexity (rounds)

10 988 O 2]'_".1.%!3:- a5 _15:‘]
10 2% CC QL2616 2.5 39

AES-128 . —
10) 2= CC gLa6.72 2.5 5]
10) 24 CP 2126.89 2.5 [35]
19 EH] ‘s ::_JLFJ':]-]U a5 HEJ E]

AES-192 _ __ . 39 15
192 EL‘\ CC :El.J':]-_:r 3 5 :;
14 200 CC 235442 3.5 (39

AES-256 - — . - ]
14 2% CC grLad 3.5 5]

P Our analysis estimates the cost as 21259,
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3.1 Quantum Cryptanalysis of AES

» Ref: “Applying Grover’s algorithm to AES: quantum resource estimates”, Grassl, Langenberg,
Roetteler, Steinwandt Quant-ph 1512.04965 15 December, 2015

» Problem: Given AES-128 and 3 plaintext/ciphertext pairs, find the secret key K

» Solution (roughly):
— Step 1: [Wd1>=1/v2128 YT#|A>|0> uniform superposition of all 27128 keys
— Step 2: |2 >=1/v21128 YT A>|AESLk (m)> computation of AES with key K to

ciphertext cim

— Step 4: apply Grover’s algorithm to find which key K gives the equality value 1 versus the
inequality value 0

» Main costs: Computation of AES, Computation of Grover’s algorithm
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3.2 Quantum Cryptanalysis of AES (Contd)

» Ref: “Applying Grover’s algorithm to AES: quantum resource estimates”, Grassl, Langenberg, Roetteler,
Steinwandt Quant-ph 1512.04965 15 December, 2015

» Grover’'s Cost (well known):
— To find 1 item in an N long list costs O(V/V ). Here #=21128, 21192, 21256

» AES-k cost (Note quantum circuits are fully reversible)

FHoates depth #qubits
NOT CNOT Tofftoli T overall storage ancillae
128 176 21448 20480 5760 12,636 320 96
192 136 17568 16,384 4608 10,107 256 96
256 215 27492 26,624 7488 16408 416 96

Table 1. Quantum resource estimates for the key expansion phase of AES-k, where k € {128, 192, 256},
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3.3 Quantum Cryptanalysis of AES (Contd)

» Ref: “Applying Grover’s algorithm to AES: quantum resource estimates”, Grassl, Langenberg, Roetteler,
Steinwandt Quant-ph 1512.04965 15 December, 2015

cates depth Fqubits
T Clifford T overall
Initial 0 0 0 0 128
Key Gen 143,360 | 85.464 5.760 12.626 320
10 Rounds 917.504 1.194.956 44928 08173 536

Total [.LO60.864 1,380,420 50,688 110,799 084

Table 2. Quantum resource estimates for the implementation of AES-128,
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3.4 Quantum Cryptanalysis of AES (Contd)

» Ref: “Applying Grover’s algorithm to AES: quantum resource estimates”, Grassl, Langenberg, Roetteler,
Steinwandt Quant-ph 1512.04965 15 December, 2015

FHoates depth F#qubits
T Clifford T overall
Initial 0 0 0 0 192
Key Gen 114,688 148.776 4,608 10,107 256
12 Rounds 1.089,536 1.418.520 39,744 86.849 664

Total 1.204.224  1,567.296 44,352 96,956 1,112

Table 3. Quantum resource estimates for the implementation of AES-192. The lower gate count in Key Gen and the lower depth,

when compared to AES-128, arises from using the additional available space to store intermediate results and to parallelize parts of
the circuit.
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3.5 Quantum Cryptanalysis of AES (Contd)

» Ref: “Applying Grover’s algorithm to AES: quantum resource estimates”, Grassl, Langenberg, Roetteler,
Steinwandt Quant-ph 1512.04965 15 December, 2015

=
oates depth #qubits
T Clifford T overall
Initial 0 0 0 0 256
Key Gen 186,368 240,699 7488  16.408 416
14 Rounds 1,318,912 1.715.400 52416 114,521 664
Total 1.505.280 [.956.099 59,904 130,929 1.336

Table 4. Quantum resource estimates for the implementation of AES-256.
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3.6 Quantum Differential and Linear Cryptanalysis

» Ref: “Quantum Differential and Linear Cryptanalysis”, Kaplan, Leurent, Leverrier, Naya-
Plasencia (2017)

» The authors examine differential and linear cryptanalysis in two settings defined as follows
(PRP = Pseudo Random Permutation
PRF = Pseudo Random Function)

» Standard security: a block cipher is standard secure against quantum adversaries if no
efficient quantum algorithm can distinguish the block cipher from PRP (or a PRF) by making
only classical queries (Q1) (i.e. can make classical encryption queries)

» Quantum security: a block cipher is quantum secure against quantum adversaries if no

efficient quantum algorithm can distinguish the block cipher from PRP (or a PRF) even by
making quantum queries (Q2) (i.e. can make quantum encryption queries)
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3.7 Quantum Differential and Linear Cryptanalysis

» Ref: “Quantum Differential and Linear Cryptanalysis”, Kaplan, Leurent, Leverrier, Naya-
Plasencia (2017)

» Results:

» Differential cryptanalysis and linear cryptanalysis usually offer a quadratic gain in the Q2 model
over the classical model.

— If a block cipher is resistant to a classical linear or differential cryptanalysis attack costing at
least 27/ then it is also resistant the corresponding quantum linear or differential
cryptanalysis attacks cost at least 274/2

» In the Q1 model cryptanalytic attacks might offer little gain over the classical model when the
key-length is the same as the block length (e.g. AES-128)

» The gain of cryptanalytic attacks in the Q1 model can be quite significant (similar to the Q2
model) when the key length is longer (e.g. AES-256) than the block length
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3.8 Breaking Symmetric Cryptosystems using
Quantum Period Finding

» Ref: “Breaking Symmetric Cryptosystems using Quantum Period Finding”, Kaplan, Leurent,
Leverrier, Naya-Plasencia (2016)

» Results: CBC-MAC, GMAC, GCM and PMAC, OCB are all broken by forgery attacks using
their method

» The author’s take advantage of Simon’s problem and algorithm:

Simon’s problem: Given a Boolean function f : {0,1}" — {0,1}" and
the promise that there exists s € {0,1}" such that for any (z,y) € {0,1}",
f(z)=fly)] & [r®y e {07, s}], the goal is to find s.

» Note: Simon’s algorithm (next slide) was one of the first to show exponential speedup of a
quantum algorithm.
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3.9 Breaking Symmetric Cryptosystems using
Quantum Period Finding

» Ref: “Breaking Symmetric Cryptosystems using Quantum Period Finding”, Kaplan, Leurent,
Leverrier, Naya-Plasencia (2016)

» Simon’s Problem can be solved using Simon’s Algorithm which is repeated O(n) times

1. Starting with a 2n-qubit state |0)|0}, one applies a Hadamard transform
H®" to the first register to obtain the quantum superposition

SNl
‘/2_“ Z .rl-l,r|0l,r.
ze{0,1}"
2. A gquantum query to the function f maps this to the state

ﬁ > @i,

xe{0,1}

3. Measuring the second register in the computational basis yields a value f(2)
and collapses the first register to the state:

1
—F |2,r + |2 o S,l
V2
4. Applying again the Hadamard transform H®™ to the first register gives:

1
Z #E L+ (=1)") [y).
v’_v"2_ ety

5. The vectors y such that y-s = 1 have amplitude 0. Therefore, measuring the
state in the computational basis yields a random vector y such that y-s = 0.
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3.10 Breaking Symmetric Cryptosystems using
Quantum Period Finding

» Ref: “Breaking Symmetric Cryptosystems using Quantum Period Finding”, Kaplan, Leurent,
Leverrier, Naya-Plasencia (2016)

» Example: CBC-MAC
rg=0 z; = Ep(zi1 & my) CBC-MAC(M) = E(z4)

M3

ma
D‘$‘|i $ E;_- $ E;_- Ek: F——— T

Fig. 9. Encrypt-last-block CBC-MAC.

» Fix two arbitrary message blocks aq, @1, with ay # a1 define the function f:
f:{0,1} x {0,1}" = {0,1}"
bz s CBC-MAC( || 2) = Ex (Ex(2 @ Ex(0s)))

» Note: Assumption is that we have quantum access to CBC-MAC using £4k and ElkT
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3.11 Breaking Symmetric Cryptosystems using
Quantum Period Finding

» Ref: “Breaking Symmetric Cryptosystems using Quantum Period Finding”, Kaplan, Leurent,
Leverrier, Naya-Plasencia (2016)

» Example: CBC-MAC

[Pt

» Simon’s algorithm returns “s” which is defined as:
1 || Ex(co) & Ek(ai)
Y CBC—MAC(ad |[m)=ELkT (Elk (Elk ()P m))
» Let 700 =CRC—-MAC(ad0 |[md1 ) for an arbitrary message block 7241
» Let 7U1 =CRC-MAC(adl |[mil @ELL (ad0 )P ELL (adl ))

» Then 700 =71 (i.e. a forgery) since we know £U4 (ad0 )P LIk (adl )
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5. Questions?

» Contact Information:
David Cornwell, PhD
Cornwell_david@bah.com

(410) 684 6579

Address:

Booz Allen Hamilton

304 Sentinel Drive (NBP)
Annapolis Junction

MD 20701

USA
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