
Protecting	Small	Data	Items
Terence	Spies

Chief	Technologist,	HPE	Data	Security

Evolving	Models	for	Encryption

Classic	Encryption	Model

• Trusted	party	to	trusted	party
• Performance	is	measured	by	packets/bytes/sectors	per	second
• Stream	mode	performance	is	vital

Decrypt-before-use

Application	layer	security

• Two	new-ish problem	domains:
• Layering	encryption	into	existing	applications
• Building	data	substitutes	that	can	be	used	without	decryption

• Security	model	is	trusted-to-semitrusted endpoint	(cloud,	hadoop)
• Performance	is	about	ability	to	accommodate	data	characteristics
• Item-by-item	rather	than	stream	mode	encryption

Use-before-decrypt

Today’s	Talk

• Initial	solutions	to	application	layer	encryption:		SP800-38G
• The	Feistel security	model	and	proofs
• Challenges	and	fixes	for	38G	methods
• Other	models	for	building	very-tiny	domain	ciphers

Format-Preserving	Encryption

• One	solution	to	this	issue	is	FPE,	which	NIST	adopted	under	SP800-
38G	in	2016

Two	FPE	models:		Streaming

6 4 2 8

AES	CTR	
mode +2 +9 +1 +5

8 3 3 3Specified	in	X9.124	part	2

Key

Streaming

• Advantages:
• Very	fast,	parallelizable
• Equal	security	at	all	plaintext	sizes

• Disadvantage:
• Cannot	encrypt	multiple	data	items	per	key
• Mallebility

• Useful	in	point-to-point	contexts

Two	FPE	models:		Variable	sized	permutation

6 4 2 8

FP	Block	Cipher

8 3 3 3

Key

Tweak

Variable	sized	permutation

• Advantages:
• Creates	useful	random	maps	(aka	tokens	or	psuedonyms)
• No	mallebility

• Disadvantages:
• Slower	(requires	multiple	cipher	queries	per	encryption)
• Small	data	sizes	are	harder	to	secure

• Useful	in	storage	contexts

• One	way	to	implement	FPE	is	via	databases…

Tweaking

• Odd	name,	critical	to	encrypting	small	data	items
• Key	=	private	entropy,	tweak	=	public	entropy
• Can	be	used	to	keep	subfields	in	the	clear,	removing	the	need	for	
decryption

1234	5678	9870	4556

1234	5614	5662	4556

The	FPE	Security	Model

• Standard	FPE	methods	are	based	on	Feistel networks
• Well-studied	construction,	used	as	the	basis	for	DES,	other	ciphers
• Famous	proofs	show	Feistel networks	strong	at	3	or	4	rounds

• Feistel is	an	iterated	set	of	round	functions,	with	the	input	divided	
into	a	right	and	left	half,	where	each	round	computes	a	new	right	and	
left	half.		Each	round	n	uses	a	distinct	inner	function	fn()

• R’	=	L
• L’	=	R	+	fn(L)

• Easy	to	show	that	this	forms	a	permutation,	even	if	fn()	isn’t

Luby-Rackoff Results

• Basic	notion:		indistinguishability	from	a	random	permutation

?
Mystery	Box

Plaintext Ciphertext

Fixed	
Feistel Net

Choice	A Choice	B A	or	B?

Luby-Rackoff Results

• If	fn()	is	a	set	of	pseudo-random	functions,	then:
• A	3	round	Feistel network	using	fn()	is	indistinguishable	from	a	pseudo-
random	permutation	by	any	attacker	using	up	to	X	known	plaintext	queries
• A	4	round	Feistel network	using	fn()	is	indistinguishable	form	a	psuedo-
random	permutation	by	any	attacker	using	up	to	Y	known	plaintext	queries
• X	and	Y	are	bounded	by	the	sqrt(size	of	fn())	– the	birthday	bound

• That	bound	is	fine	for	larger	block	ciphers,	and	we	know	the	bound	
increases	with	round	count
• Can	we	use	round	count	to	overcome	the	effect	of	small	fn()	size?

Two	Important	Results

What	more	could	you	want?

• Two	issues:
• Constants	become	important	when	the	domain	size	is	very	small
• Adding	the	ability	to	tweak	the	construction	is	a	non-trivial	step…

• Tweaks	are	critical	in	encryption	of	small	data	items	in	important	
applications….

Bellare-Hoang-Tessaro Attack

• When	the	FPE	domain	is	very	small,	messages	under	many	tweaks	
may	allow	message	recovery.
• How	small,	and	how	efficient?

From	Bellare,	Hoang,	Tessaro,	“Message	Recovery	Attacks	on	Feistel-based	FPE”,	CCS	2016	

Resolving	the	BHT	Attack

• Two	solutions:
• Disallow	tiny	domain	sizes	(standards	already	disallow	the	smallest	cases)
• Recommend	double	encryption	for	small	domains

• Attack	parameters:
• Attack	difficulty	is	super-exponential	in	domain	size
• Exponential	in	round	count	(sadly)
• Double	encryption	makes	attack	infeasible	even	for	tiny	sizes

Tweak	Inclusion	Methods

Left Right

F(K,	R,	T)+

Right’ Left’

Three	Methods

• FF1:
• F(K,	R,	T,	N)	=	CMAC-AES(K,	T	|	N	|	R)			(with	domain	separators)

• FF2:
• F(K,	R,	T,	N)	= AES(AES(K,	T),	N	|	R)			(with	domain	separators)

• FF3:
• F(K,	R,	T,	N)	=	AES(K,	(T	XOR	N)	XOR	R)

FF2	“Subkey”	Attack

Round	0

Round	10

…

AES Key

Tweak

Round	Key

Round	Key

Plaintext

Ciphertext

FF2	“Subkey”	Attack

Round	0

Round	10

…

Guessed	Key

Guessed	Key

Fixed	Plaintext

Ciphertext

FF2	”Subkey”	Attack

Tweak Plaintext encrypted	under	
unknown	key

0 213 314	922

1 992 128	239

2 771	002	932

3 ….

4 …..

Guessed	
Round	Key

Plaintext encrypted	under	
unknown	key

7f4b0231… 981 231	001

ffb07343.. 412 023	339

012bc43.. 213	314	922

…. ….

… …..

FF2	“Subkey”	Attack

• How	effective	is	this?
• 2128 /	Q,	where	Q	=	number	of	encryptions	under	different	tweaks
• Effectively	trades	time	for	memory

• Can	be	mitigated	at	application	by	preventing	large	scale	encryptions
• Straightforward	to	mitigate	by	a	small	change	to	FF2

FF2	“Subkey”	Fix

Round	0

Round	10

…

AES Key

Tweak

Round	Key,	Tweak

Round	Key,	Tweak

Plaintext

Ciphertext

FF3	“divide-and-conquer”	Attack

• Due	to	Durak and	Vaudenay (paper	forthcoming)
• Observation:		when	the	input	is	small,	may	be	able	to	attack	3	or	4	
round	Feistel

• Because	FF3	XORs	the	round	number	and	the	tweak,	controlling	
tweak	bytes	allows	the	attacker	cause	round	numbers	to	repeat,	
turning	the	8	round	cipher	into	two	four	round	blocks,	allowing	the	
smaller	attack	to	succeed.

FF3	”divide-and-conquer”	Attack

• How	practical	is	this?		Still	looks	like	>275 effort	for	practical	cases.
• Fix	is	straightforward:		restrict	upper	tweak	bytes	so	that	tweak	and	
round	counter	cannot	interact.

• X9	is	working	on	incorporation	of	these	fixes	into	X9.124,	and	building	
a	structure	that	will	allow	future	evolution.
• Double	encrypt	small	items
• Fix	subkey attack
• Fix	FF3	tweak/round	interaction

Handling	the	really	small	stuff

• In	many	implementations,	out-of-format	data	is	a	reality
• Ingesting	transaction	data	with	CCNs	<	12	digits,	empty	fields,	single	
character	fields
• Need	a	few	different	solutions:
• The	ability	to	encrypt	single	character	values	safely
• Application	level	protocols	for	hiding	empty	fields	and	short	values
• Need	logic	to	hide/strip	fields

Sub-FPE	encryption

• How	do	we	handle	very	small	fields?		(outside	of	padding)
• Shuffle	methods	can	be	effective
• Write	out	every	possible	input
• Use	AES	to	produce	random	bits
• Method	1:	Knuth	shuffle
• Method	2:	Encrypt	with	AES	ECB,	sort	the	outputs

• Would	be	useful	to	have	a	FIPS	method	for	doing	this…

What	have	we	learned	about	data	item	
privacy?
• Format	preservation	is	useful,	but	only	part	of	the	solution
• Ultimate	value:		avoiding	decryptions	in	semi-trusted	enviroments
• This	means	surgically	controlling	properties	reflected	in	ciphertext
• Clear	subfields
• Referential	integrity
• Many	other	wishlist items,	especially	in	analytic	environments

• Feistel techniques	are	a	flexible,	efficient	technique	with	established	
security	arguments

