Test Vector Leakage Assessment (TVLA) for Side Channel Analysis in Conformance Testing Scenario (A16a)

Gilbert Goodwill

November 5, 2015
Test Vector Leakage Assessment (TVLA)

- Side-channel testing for standardized testing applications
- Instead of traditional evaluation attack scenario requiring:
 - Algorithm-specific knowledge
 - Up to date with latest attacks
 - Trial and error until success or allotted time/effort is exhausted…
Test Vector Leakage Assessment

• Use specified test vectors
 - Known key, data
 - Encompass cipher-specific knowledge to trigger different possible leakages

• t-Test on known quantities for leakage measurement
 - Pass/fail test on leakage levels for exploitable information
 - Tests whether there is a statistically significant difference between means
 - Thresholds set at 99.999% confidence (and higher)
Algorithms and Tests

• AES-128, -192, -256
 ▪ S-box output; round output; round input \oplus output, S-box input \oplus output
 ▪ Fixed-vs.-varying, semi-fixed-vs.-varying

• DES, TDES
 ▪ Same as intermediates AES

• SHA256, HMAC-SHA256
 ▪ Round output, message schedule, t_1, t_2, round input \oplus output
 ▪ Fixed-vs.-varying

• Public key: RSA, ECC
 ▪ Semi-fixed-vs-varying
Test Vector Leakage Assessment (TVLA)

- Signal finding is required
 - Skill must be developed in testing laboratories
 - Once developed is applicable across ciphers

- Confirm successful signal isolation
 - Using leakage of non-sensitive quantities such as input and/or output
 - Absence of signal does not mean absence of leakage
Attack potential factors

- Signal isolation may require
 - Expertise
 - Knowledge of device
 - Equipment, parts, etc.

- Tests target exploitable intermediates and general leakage
 - Exploitable intermediates have direct parity with attack number of traces
 - Non-specific (fixed-vs.-varying) tests combine leaks together
 - Show leakage failures earlier than an attack may be possible