The Pros and Cons of Using an Embedded FIPS Module vs. Validating an Entire Product

Agenda

- What is it?
- What are some considerations?
- Getting started

Imagine This (if you can)

What's the Problem?

- You're non-compliant
- You don't have the time
- Pressure....Lots and lots of pressure

Here's the solution –

Well, maybe!!!

What's to it?

- Specific to the crypto implementation

 Usually a tool kit
- Tight crypto boundary
- Called on a service-by-service basis

NOT ONE SIZE FITS ALL!!!

Considerations

Embedded Modules (the case for)

- Time to market – Weeks vs months/year
- Cost
 - Order of magnitude less expensive
- Level of Effort
 - Exchanging a component vs numerous bugs/coordinating with labs/Gov't
- Maintenance
 - Product software updates
- Scalability
 - Multiple product lines
 - Small teams
- Sales

- Meets the requirement to use FIPS crypto

Porting (what can you do)

FIPS 140-2 Implementation Guidance G.5

For Level 1 Operational Environment, a software cryptographic module will remain compliant with the FIPS 140-2 validation when operating on any general purpose computer (GPC) provided that the GPC uses the specified single user operating system/mode specified on the validation certificate, <u>or another compatible single user operating system</u>.

Firmware modules (i.e. Operational Environment is not applicable) <u>that do</u> <u>not require any source code modifications</u> (e.g., changes, additions, or deletions of code) to be recompiled and its identified unchanged tested operating system (i.e. same version or revision number) <u>may be ported</u> <u>together from one GPC or platform to another GPC or platform while</u> <u>maintaining the module's validation</u>.

Why would anyone do it any other way??

Embedded Modules (the case

against)

- Coverage
 - Some functionality just may not be there
 - Individual services may not be drop in compatible
- Relevance
 - Historical list
 - Dated algorithms
 - May not meet other certification requirements
- Maintenance
 - Rely on someone else to keep the module up-to-date
 - Bugs!
- Marketing
 - Name on website

Missed Requirement Examples

- **FCS_CKM.1.1** The TSF shall generate asymmetric cryptographic keys in accordance with a specified cryptographic key generation algorithm: [selection:
- RSA schemes using cryptographic key sizes of 2048-bit or greater that meet the following: FIPS PUB 186-4, "Digital Signature Standard (DSS)", Appendix B.3;
- ECC schemes using "NIST curves" [selection: P-256, P-384, P-521] that meet the following: FIPS PUB 186-4, "Digital Signature Standard (DSS)", Appendix B.4;
- FFC schemes using cryptographic key sizes of 2048-bit or greater that meet the following: FIPS PUB 186-4, "Digital Signature Standard (DSS)", Appendix B.1]

What's Missing?

- Key management
 - Most embedded modules are just tool kits
- Key derivation functions
 - Typically handled by protocol implementations outside of the module boundary
- Entropy

Develop Your Strategy

- Why are you considering it?
- What are your competitors doing?
- How much time do you have?
- What services use crypto?
- Other certifications beyond FIPS 140?

Commonly Used Embedded Modules

- Operating System Modules
 - Apple
 - Linux
 - Microsoft
- Open Source Modules
 - OpenSSL
 - NSS
- Private Label Modules
 - Safelogic
 - WolfSSL
 - Mocana
 - RSA

Hybrid Approaches

- Progressive:
 - Start open source
 - Move to full validation
- Roll your own:
 - Privately branded/owned embedded module
- Pick and Choose:
 - Only claim "compliance" on the services customers care about

Summary

- Described what it is.
- Discussed some considerations when deciding to use an embedded module
- Reviewed some steps for getting started

Questions?

Thank you!