
Improving Module’s Performance 	
When Executing the Power-up Tests	

	
	
	
	
	

Allen Roginsky	
	

CMVP NIST 	
May 2016	

	

Overview of the talk	

•  The self-test requirements in FIPS 140-2	
•  The effect of self-tests on the module’s start-up time	
•  May consider new ways to meet various self-test

requirements	
•  This talk is concerned with an integrity test	
•  Details of the proposal	
•  Next step	

FIPS 140-2 Self-Test
Requirements	

•  Power-up tests 	
–  Integrity test	
– Approved algorithm tests	
– Critical functions tests	

•  Conditional tests 		
– When generating key pairs, loading software/firmware,

manually loading keys; a bypass test 	

Integrity test requirements are different for modules operating in
the modifiable and non-modifiable environments.	
	

•  The implementations have become more robust	
– Lesser chance of having bits flipped or some other errors

introduced during the operation of the module	

•  The image size of software / firmware that is subject to an
integrity test has grown substantially	
– No hard research results but the evidence points to

Gigabytes of image data and at least several seconds of
execution time even with the fastest acceptable integrity
test methodology.	

	
	

Industry Trends After the
2001 Adoption of FIPS 140-2	

	
• Think of a smartcard that is used to authenticate
someone’s entry into a building	
	
	
• What solutions do other industries find acceptable to
claim that all or at least a large number of similar items
have been tested? 	
	
	

Industry Trends (2)	

	

• They perform statistical testing!	
– And claim, rightfully, that the entire set has been

tested.	
• Think of testing the safety, the efficacy and the
interactions of the medications	
• Also, the crop yields, etc., etc.. 	
• Will this approach somehow help with modules’
integrity testing?	
	
	

Industry Trends (3)	

•  An integrity test is a health test only. It is not designed nor is it
intended to guard against the targeted attacks. The
cryptographic module should have other means of defense –
commensurate with the module’s Security Level – to protect
against the deliberate attacks.

•  The software or firmware image that needs to be integrity-tested
can be represented by a linear string of bits; that is, bits can be
numbered from 1 to N. This string can be efficiently broken
into the substrings with ascending bit numbers.	

	

We are making these assumptions:

	

•  Suppose the software/firmware image is represented as a bit-
string. The module breaks the string into n substrings; n is no
greater than 1024. The length, k bits, of each of the first (n-1)
substrings is the same; the length of the last substring is no
greater than k.	

•  The module applies an appropriate integrity-testing technique
to each substring on the software/firmware image.

	

Statistical Approach

	

•  Suppose the module employs a random number generator
that generates numbers between 1 and n. The random
number generator randomly selects m different numbers
between 1 and n.

•  The module applies an appropriate integrity-testing
technique to each substring that corresponds to the selected
m numbers. 	

•  A check is performed to see if all m results are matching
their pre-computed values.

	

Statistical Approach
continued

	
	

•  A Bloom filter optimization can significantly
improve the efficiency of this method.

	

Statistical Approach
suggestion

•  Choose the number d significantly less than n and, optionally, such
that d divides n.

•  The first time the deterministic test is used, test the integrity of the
substring made of the first d bits. Store the end bit location of the
tested string. Denote this location f. (f=d after the first test.)	

•  Next time the test is performed check the integrity of the substring
of length d that starts with bit f+1. (Need to account for the
possibility that the loss of integrity may force f to get stuck at a
fixed value.)

•  Roll over after reaching the end point n.
	

Deterministic Approach

 Announcement	
•  CMUF is forming a working group to review and

comment on Draft IG 9.x, Performing an Integrity
Test by Random Sampling. This group will make
recommendations and collaborate with CMVP. 	

Interested? 	
 Email Nithya@cygnacom.com 	
 with subject line draft IG9.x working group 	

	

•  The problem of integrity testing for modules with the
time constraints / performance requirements is
addressed.

•  The proposed solution is consistent with many
industries’ interpretation of “testing ‘all’”.	

.
	

Summary

	

Vendors are asking to not perform each
algorithm’s known answer test; not just delay the
invocation of the test until before the first use of
the algorithm.
.
	

Next Step

