
LibreSSL

Giovanni Bechis
<giovanni@openbsd.org>

International Crypto Module Conference 2016

<giovanni@openbsd.org>

CVE-2014-0160

I 17% of https web servers use OpenSSL as SSL/TLS
library and have heartbeat extension enabled

I at least Cisco, Fortinet, Oracle and Siemens products
has been affected

I bug was introduced on December 2011 and fixed on
April 2014

I exploitation of this bug does not leave any trace

CVE-2014-0160

I 17% of https web servers use OpenSSL as SSL/TLS
library and have heartbeat extension enabled

I at least Cisco, Fortinet, Oracle and Siemens products
has been affected

I bug was introduced on December 2011 and fixed on
April 2014

I exploitation of this bug does not leave any trace

CVE-2014-0160

I 17% of https web servers use OpenSSL as SSL/TLS
library and have heartbeat extension enabled

I at least Cisco, Fortinet, Oracle and Siemens products
has been affected

I bug was introduced on December 2011 and fixed on
April 2014

I exploitation of this bug does not leave any trace

CVE-2014-0160

I 17% of https web servers use OpenSSL as SSL/TLS
library and have heartbeat extension enabled

I at least Cisco, Fortinet, Oracle and Siemens products
has been affected

I bug was introduced on December 2011 and fixed on
April 2014

I exploitation of this bug does not leave any trace

How the Heartbleed bug works:

I attacker can dump up to 64k of memory near the
SSL heartbeat of the attacked machine

I attack can be repeated many times to obtain
different memory allocations of 64k size

I memory stolen could reveal any kind of data:
passwords, credit card numbers, personal data, ...

How the Heartbleed bug works:

I attacker can dump up to 64k of memory near the
SSL heartbeat of the attacked machine

I attack can be repeated many times to obtain
different memory allocations of 64k size

I memory stolen could reveal any kind of data:
passwords, credit card numbers, personal data, ...

How the Heartbleed bug works:

I attacker can dump up to 64k of memory near the
SSL heartbeat of the attacked machine

I attack can be repeated many times to obtain
different memory allocations of 64k size

I memory stolen could reveal any kind of data:
passwords, credit card numbers, personal data, ...

Why Heartbleed happened ?

I code too complex and intricated

I developers mostly interested in adding features, not
fixing code

I fixes not merged upstream

I bugs (and fixes) sleep for years in the bug tracker

Why Heartbleed happened ?

I code too complex and intricated

I developers mostly interested in adding features, not
fixing code

I fixes not merged upstream

I bugs (and fixes) sleep for years in the bug tracker

Why Heartbleed happened ?

I code too complex and intricated

I developers mostly interested in adding features, not
fixing code

I fixes not merged upstream

I bugs (and fixes) sleep for years in the bug tracker

Why Heartbleed happened ?

I code too complex and intricated

I developers mostly interested in adding features, not
fixing code

I fixes not merged upstream

I bugs (and fixes) sleep for years in the bug tracker

OpenSSL malloc replacement

I it never frees memory (tools cannot spot bugs)

I it uses LIFO recycling (no ’use after free’ problems)

I includes a debugging malloc that send private info to
logs

I includes the ability to replace the malloc/free at
runtime

OpenSSL malloc replacement

I it never frees memory (tools cannot spot bugs)

I it uses LIFO recycling (no ’use after free’ problems)

I includes a debugging malloc that send private info to
logs

I includes the ability to replace the malloc/free at
runtime

OpenSSL malloc replacement

I it never frees memory (tools cannot spot bugs)

I it uses LIFO recycling (no ’use after free’ problems)

I includes a debugging malloc that send private info to
logs

I includes the ability to replace the malloc/free at
runtime

OpenSSL malloc replacement

I it never frees memory (tools cannot spot bugs)

I it uses LIFO recycling (no ’use after free’ problems)

I includes a debugging malloc that send private info to
logs

I includes the ability to replace the malloc/free at
runtime

What’s wrong with OpenSSL code ?

I quite all OpenSSL API headers are public

I it is developed using ”OpenSSL C”

I it uses its own functions instead of those provided by
libc like BIO free(3) or BIO strdup

I it has strange compile options (in OpenSSL both
NO OLD ASN1 and NO ASN1 OLD compile options
are present but their meaning is slightly different)

What’s wrong with OpenSSL code ?

I quite all OpenSSL API headers are public

I it is developed using ”OpenSSL C”

I it uses its own functions instead of those provided by
libc like BIO free(3) or BIO strdup

I it has strange compile options (in OpenSSL both
NO OLD ASN1 and NO ASN1 OLD compile options
are present but their meaning is slightly different)

What’s wrong with OpenSSL code ?

I quite all OpenSSL API headers are public

I it is developed using ”OpenSSL C”

I it uses its own functions instead of those provided by
libc like BIO free(3) or BIO strdup

I it has strange compile options (in OpenSSL both
NO OLD ASN1 and NO ASN1 OLD compile options
are present but their meaning is slightly different)

What’s wrong with OpenSSL code ?

I quite all OpenSSL API headers are public

I it is developed using ”OpenSSL C”

I it uses its own functions instead of those provided by
libc like BIO free(3) or BIO strdup

I it has strange compile options (in OpenSSL both
NO OLD ASN1 and NO ASN1 OLD compile options
are present but their meaning is slightly different)

what’s wrong with OpenSSL ?

#include "des_locl.h"

/* HAS BUGS! DON’T USE - this is only present for use in des.c */

void DES_3cbc_encrypt(DES_cblock *input, DES_cblock *output, long length,

DES_key_schedule ks1, DES_key_schedule ks2, DES_cblock *iv1,

DES_cblock *iv2, int enc)

what’s wrong with OpenSSL ?

===

RCS file: /var/cvs/src/lib/libssl/src/apps/Attic/s_socket.c,v

retrieving revision 1.31

retrieving revision 1.32

diff -u -p -r1.31 -r1.32

--- apps/s_socket.c 19 Apr 2014 13:13:01 -0000 1.31

+++ apps/s_socket.c 19 Apr 2014 16:38:04 -0000 1.32

@@ -77,7 +77,6 @@

#ifndef OPENSSL_NO_SOCK

-static struct hostent *GetHostByName(char *name);

static int ssl_sock_init(void);

static int init_server(int *sock, int port, int type);

static int init_server_long(int *sock, int port, char *ip, int type);

@@ -296,7 +295,7 @@ redoit:

return (0);

}

- h2 = GetHostByName(*host);

+ h2 = gethostbyname(*host);

if (h2 == NULL) {

BIO_printf(bio_err, "gethostbyname failure\n");

LibreSSL

I young project, development started on April 2014

I mostly developed by OpenBSD team

I forked from OpenSSL 1.0.1g

LibreSSL

I young project, development started on April 2014

I mostly developed by OpenBSD team

I forked from OpenSSL 1.0.1g

LibreSSL

I young project, development started on April 2014

I mostly developed by OpenBSD team

I forked from OpenSSL 1.0.1g

why a fork ?

I openssl is a ”de facto” standard and widely used

I it is difficult to get patches applied upstream

I other tls libraries are not much better (3 CVE for nss
in 2016)

why a fork ?

I openssl is a ”de facto” standard and widely used

I it is difficult to get patches applied upstream

I other tls libraries are not much better (3 CVE for nss
in 2016)

why a fork ?

I openssl is a ”de facto” standard and widely used

I it is difficult to get patches applied upstream

I other tls libraries are not much better (3 CVE for nss
in 2016)

LibreSSL goals

I preserve API/ABI compatibility with OpenSSL

I bring more people into working with the codebase
(+KNF, -#ifdef)

I fix bugs asap, use modern coding practices

I do portability the right wayTM

LibreSSL goals

I preserve API/ABI compatibility with OpenSSL

I bring more people into working with the codebase
(+KNF, -#ifdef)

I fix bugs asap, use modern coding practices

I do portability the right wayTM

LibreSSL goals

I preserve API/ABI compatibility with OpenSSL

I bring more people into working with the codebase
(+KNF, -#ifdef)

I fix bugs asap, use modern coding practices

I do portability the right wayTM

LibreSSL goals

I preserve API/ABI compatibility with OpenSSL

I bring more people into working with the codebase
(+KNF, -#ifdef)

I fix bugs asap, use modern coding practices

I do portability the right wayTM

Some differences between LibreSSL and OpenSSL

I ∼90000 lines of code less but same functionalities

I does not support VMS, MsDos nor MacOS 9

I does not have FIPS support

I different set of ciphers (-SRP, +ChaCha, +poly1305)

I BIO * functions do the right thingTM

I malloc(x*y) has been converted to reallocarray(x,y)

I in LibreSSL, openssl(1) does not have SSLv3 support
nor dynamic engine loading support

I OpenSSL can pass environment variables to $ENV::
in config files

Some differences between LibreSSL and OpenSSL

I ∼90000 lines of code less but same functionalities

I does not support VMS, MsDos nor MacOS 9

I does not have FIPS support

I different set of ciphers (-SRP, +ChaCha, +poly1305)

I BIO * functions do the right thingTM

I malloc(x*y) has been converted to reallocarray(x,y)

I in LibreSSL, openssl(1) does not have SSLv3 support
nor dynamic engine loading support

I OpenSSL can pass environment variables to $ENV::
in config files

Some differences between LibreSSL and OpenSSL

I ∼90000 lines of code less but same functionalities

I does not support VMS, MsDos nor MacOS 9

I does not have FIPS support

I different set of ciphers (-SRP, +ChaCha, +poly1305)

I BIO * functions do the right thingTM

I malloc(x*y) has been converted to reallocarray(x,y)

I in LibreSSL, openssl(1) does not have SSLv3 support
nor dynamic engine loading support

I OpenSSL can pass environment variables to $ENV::
in config files

Some differences between LibreSSL and OpenSSL

I ∼90000 lines of code less but same functionalities

I does not support VMS, MsDos nor MacOS 9

I does not have FIPS support

I different set of ciphers (-SRP, +ChaCha, +poly1305)

I BIO * functions do the right thingTM

I malloc(x*y) has been converted to reallocarray(x,y)

I in LibreSSL, openssl(1) does not have SSLv3 support
nor dynamic engine loading support

I OpenSSL can pass environment variables to $ENV::
in config files

Some differences between LibreSSL and OpenSSL

I ∼90000 lines of code less but same functionalities

I does not support VMS, MsDos nor MacOS 9

I does not have FIPS support

I different set of ciphers (-SRP, +ChaCha, +poly1305)

I BIO * functions do the right thingTM

I malloc(x*y) has been converted to reallocarray(x,y)

I in LibreSSL, openssl(1) does not have SSLv3 support
nor dynamic engine loading support

I OpenSSL can pass environment variables to $ENV::
in config files

Some differences between LibreSSL and OpenSSL

I ∼90000 lines of code less but same functionalities

I does not support VMS, MsDos nor MacOS 9

I does not have FIPS support

I different set of ciphers (-SRP, +ChaCha, +poly1305)

I BIO * functions do the right thingTM

I malloc(x*y) has been converted to reallocarray(x,y)

I in LibreSSL, openssl(1) does not have SSLv3 support
nor dynamic engine loading support

I OpenSSL can pass environment variables to $ENV::
in config files

Some differences between LibreSSL and OpenSSL

I ∼90000 lines of code less but same functionalities

I does not support VMS, MsDos nor MacOS 9

I does not have FIPS support

I different set of ciphers (-SRP, +ChaCha, +poly1305)

I BIO * functions do the right thingTM

I malloc(x*y) has been converted to reallocarray(x,y)

I in LibreSSL, openssl(1) does not have SSLv3 support
nor dynamic engine loading support

I OpenSSL can pass environment variables to $ENV::
in config files

Some differences between LibreSSL and OpenSSL

I ∼90000 lines of code less but same functionalities

I does not support VMS, MsDos nor MacOS 9

I does not have FIPS support

I different set of ciphers (-SRP, +ChaCha, +poly1305)

I BIO * functions do the right thingTM

I malloc(x*y) has been converted to reallocarray(x,y)

I in LibreSSL, openssl(1) does not have SSLv3 support
nor dynamic engine loading support

I OpenSSL can pass environment variables to $ENV::
in config files

How OpenSSL does portable

I use and abuse of internal functions that behaves
”more or less” the same as libc counterpart

I #ifdef and #ifndef everywhere

I support for as many combinations of operating
systems and compilers out there

How OpenSSL does portable

I use and abuse of internal functions that behaves
”more or less” the same as libc counterpart

I #ifdef and #ifndef everywhere

I support for as many combinations of operating
systems and compilers out there

How OpenSSL does portable

I use and abuse of internal functions that behaves
”more or less” the same as libc counterpart

I #ifdef and #ifndef everywhere

I support for as many combinations of operating
systems and compilers out there

How OpenSSH (and LibreSSL) does portable

I assume a sane target OS (OpenBSD) and code with
his standards

I build and maintain code on the main target OS,
using modern C

I provide portability code only to provide functions
that other OS’s don’t provide

I do not reimplement libc

I put as few #ifdefs as possible in the code

How OpenSSH (and LibreSSL) does portable

I assume a sane target OS (OpenBSD) and code with
his standards

I build and maintain code on the main target OS,
using modern C

I provide portability code only to provide functions
that other OS’s don’t provide

I do not reimplement libc

I put as few #ifdefs as possible in the code

How OpenSSH (and LibreSSL) does portable

I assume a sane target OS (OpenBSD) and code with
his standards

I build and maintain code on the main target OS,
using modern C

I provide portability code only to provide functions
that other OS’s don’t provide

I do not reimplement libc

I put as few #ifdefs as possible in the code

How OpenSSH (and LibreSSL) does portable

I assume a sane target OS (OpenBSD) and code with
his standards

I build and maintain code on the main target OS,
using modern C

I provide portability code only to provide functions
that other OS’s don’t provide

I do not reimplement libc

I put as few #ifdefs as possible in the code

How OpenSSH (and LibreSSL) does portable

I assume a sane target OS (OpenBSD) and code with
his standards

I build and maintain code on the main target OS,
using modern C

I provide portability code only to provide functions
that other OS’s don’t provide

I do not reimplement libc

I put as few #ifdefs as possible in the code

LibreSSL API, ftp client

- if (inet_pton(AF_INET, host, &addrbuf) != 1 &&

- inet_pton(AF_INET6, host, &addrbuf) != 1) {

- if (SSL_set_tlsext_host_name(ssl, host) == 0) {

- ERR_print_errors_fp(ttyout);

- goto cleanup_url_get;

- }

- }

- if (SSL_connect(ssl) <= 0) {

- ERR_print_errors_fp(ttyout);

+ if (tls_connect_socket(tls, s, sslhost) != 0) {

+ fprintf(ttyout, "SSL failure: %s\n", tls_error(tls));

goto cleanup_url_get;

}

- if (ssl_verify) {

- X509 *cert;

-

- cert = SSL_get_peer_certificate(ssl);

- if (cert == NULL) {

- fprintf(ttyout, "%s: no server certificate\n",

- getprogname());

- goto cleanup_url_get;

- }

-

- if (ssl_check_hostname(cert, host) != 0) {

- X509_free(cert);

- fprintf(ttyout, "%s: host ‘%s’ not present in"

- " server certificate\n",

- getprogname(), host);

- goto cleanup_url_get;

- }

-

- X509_free(cert);

Questions ?

Giovanni Bechis
<giovanni@openbsd.org>

<giovanni@openbsd.org>

