Applying TVLA to **Public Key** Cryptographic Algorithms **Michael Tunstall Gilbert Goodwill**

Introduction

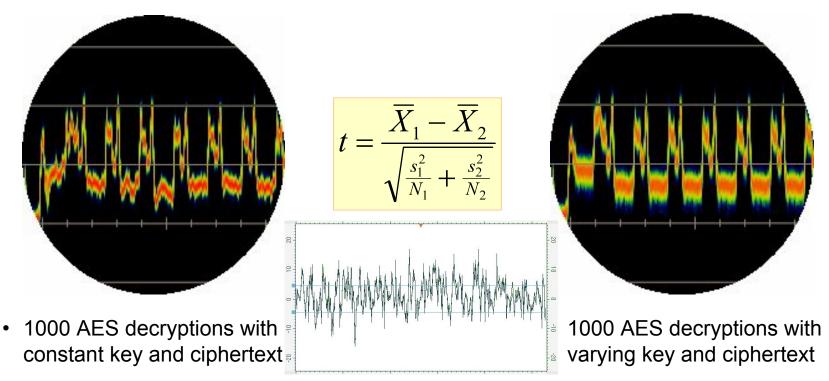
- Test Vector Leakage Assessment (TVLA) was proposed in 2012
- Efficient in evaluating the presence of leakage in block ciphers
- The choice of implementation details make applying the same strategy to Public-key cryptographic algorithms problematic
- ² □ Algorithm choices

Statistical leaks: Data dependence in AES

• Using a scope's "infinite persistence" mode to overlay the different traces.

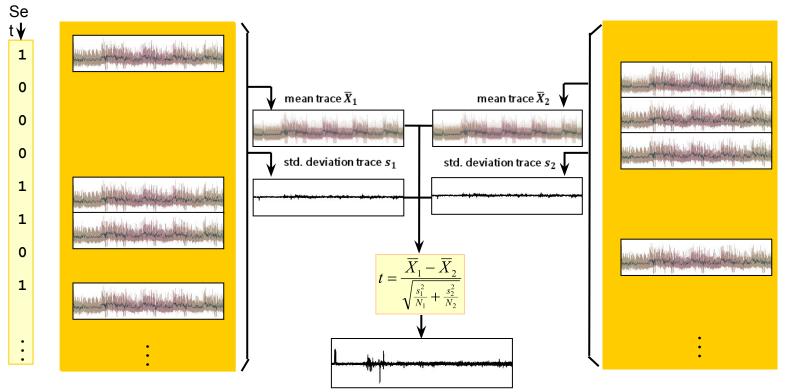
Statistical leaks: Data dependence in AES

• Using a scope's "infinite persistence" mode to overlay the different traces



Leakage Detection: Test Summary

• Comparing traces from two sets:



TVLA on Public-Key Algorithms

- TVLA typically applied to block ciphers, something like:
 - □ Fixed secret key vs. random key
 - □ Fixed message vs. random message
- For public-key algorithms it is not so straightforward
- We propose a process, as follows:
 - 1. Theoretical Analysis
 - 2. Timing Analysis
 - 3. Simple Power Analysis
 - 4. Leakage Detection
 - 5. Collision Attacks

TVLA: Theoretical Analysis

- Information gathering
 - □ What group exponentiation algorithm is being used?
 - □ Other potential vulnerabilities?
- Ideally, one would have full implementation details
- If the implementation is not known, some information can still be determined
 - How many bits does the group exponentiation take in one loop?
 - Are there any operations that execute in a variable amount of time?

TVLA: Timing Analysis

- Do any operations execute in a variable amount of time?
 - Montgomery multiplicationExtended-GCD
- We test to determine if the time taken would indicate leakage for a fixed input compared to a random input.

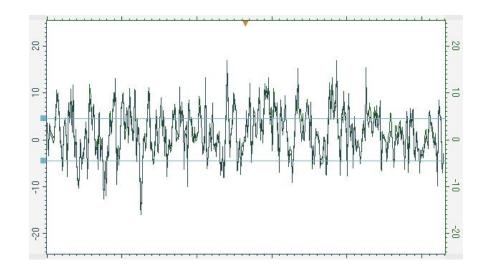
TVLA: Simple Power Analysis

- Can patterns be spotted in some operations, Typically targeting:
 - The group exponentiation algorithm
 - Final subtraction on Montgomery multiplication
- Optional, since leakage detection will reveal this quickly
 - But may save time

9

TVLA: Leakage Detection

- As with block ciphers we have, something like:
 - Fixed secret key vs. random key
 - Fixed message vs. random message
- Variation depending on the algorithm
- No statistic greater that 4.5
 - $P(\text{false positive}) = 1 \times 10^{-5}$
 - *P*(false negative) is undefined



10

- Also known as:
 - □ The BigMac Attack
 - Horizontal Side-Channel Analysis
 - Collision-Correlation Analysis
 - Correlation-Collision Analysis
 - □ The Riscure Attack
- Class of attacks looking for intermediate values that are the same at two points in an algorithm
 - Identical operand(s) for operations
- Only concerned with attacks applied to one trace

Algorithm 1: Joye's Add-Only Scalar Multiplication

Input: \boldsymbol{P} a point on elliptic curve \mathcal{E} , an *n*-bit scalar $k = (k_{n-1}, k_{n-2}, \dots, k_0)_2$ Output: Q = k P1 $R_0 \leftarrow \mathcal{O}$; $R_1 \leftarrow P$; $R_2 \leftarrow P$; 2 for $i \leftarrow 0$ to n-1 do $3 \quad R_{1-k_i} \leftarrow R_{1-k_i} + R_2 ;$ $4 \quad R_2 \leftarrow R_0 + R_1 ;$ 5 end 6 return R_0

• For example, we note that R_0 in round $i \dots$

Algorithm 1: Joye's Add-Only Scalar Multiplication

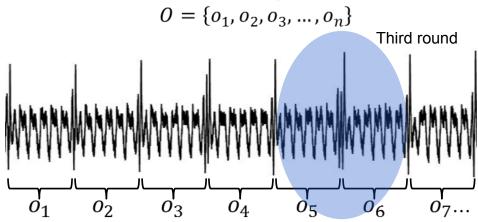
Input: P a point on elliptic curve \mathcal{E} , an *n*-bit scalar $k = (k_{n-1}, k_{n-2}, \dots, k_0)_2$ Output: Q = kP1 $R_0 \leftarrow \mathcal{O}$; $R_1 \leftarrow P$; $R_2 \leftarrow P$; 2 for $i \leftarrow 0$ to n-1 do $3 \quad R_{1-k_i} \leftarrow R_{1-k_i} + R_2;$ $R_2 \leftarrow R_0 + R_1;$ 4 5 end 6 return R_0

• We note that R_0 in round i, will be the same as the first operand of the first operation in round i + 1.

13

- Conducting an attack on a, potentially unknown, implementation will be overly complicated
- We can adapt leakage detection to compare every operation in one round with every operation in the following round
- We take a set of traces and extract 1×10^3 traces where two consecutive bits are 00
 - Arbitrarily, we shall consider the third and fourth round
 - Assume two operations per round

• Break each trace into subtraces corresponding to individual operations



- Generate a mean subtrace \bar{o}
- Subtract pointwise from each subtrace

$$\hat{O} = \{o_1 - \bar{o}, o_2 - \bar{o}, o_3 - \bar{o}, \dots, o_n - \bar{o}\} = \{\hat{o}_1, \hat{o}_2, \hat{o}_3, \dots, \hat{o}_n\}$$

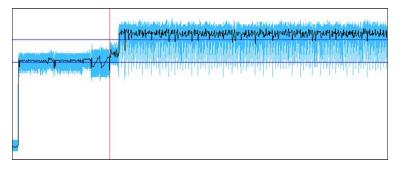
• We compute difference trace

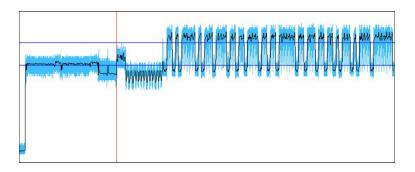
$$\Delta = \{ \hat{o}_5 - \hat{o}_7, \hat{o}_5 - \hat{o}_8, \hat{o}_6 - \hat{o}_7, \hat{o}_6 - \hat{o}_8 \}$$

- That is, all the possible combinations of operations when comparing the third and fourth rounds
- Gives a set of 1×10^3 difference traces for 00 case

- Repeat with randomly selected traces to produce 1×10^3 difference traces
- Gives a fixed and a random case for leakage detection
- Conduct attacks for bits 3 and 4 set to {00,01,10,11}

- Theoretical analysis
 - Are there any operations that take a variable amount of time?
 - E.g. modular inversion
 - What information do we have on the exponentiation algorithm used?
 - Are there any special values that cause leakage?
 - E.g. 1, 2,n-1 etc.





- Timing Analysis
 - As described previously on any identified operations
- •Simple Power Analysis
 - Can any information be derived from inspecting traces
 - Optional, but potentially saves evaluation time

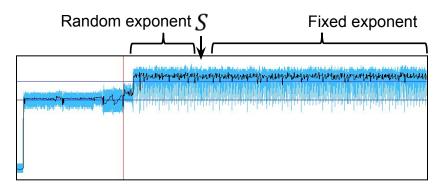
$$d = 0 \quad 1 \quad 1 \quad 0 \quad 1$$

$$1 \quad 0 \quad M \quad S \quad S \quad M \quad S \quad M \quad S \quad M \quad S \quad M \quad S$$

$$M \quad S \quad S \quad M \quad S \quad M \quad S \quad M \quad S$$

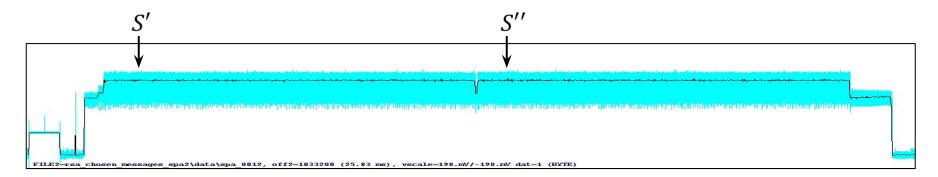
- Leakage Detection
 - Straightforward approach for testing private key, i.e. compare effect of a fixed private key with a random private key
 - Assumes that the keys are blinded when they are loaded
 - Input message not so straightforward,
 - + Pick a point in an exponentiation and choose an arbitrary fixed state S
 - Generate random exponent bits and compute the input that would lead to *S*, with the rest of the exponent fixed
 - Compare to a random input, gives a leakage detection test from S onwards
 - Equivalent to semi-fixed vs. random strategy used for block ciphers

Leakage Detection



- Blinding should mean S is not visible
- Requires the private key to be changed
- May cause problems with countermeasures to fault attacks

Leakage Detection



- The same process can be applied to RSA computed using the CRT
- Choose S' and S'' and use the CRT to derive the private key and input
- Requires the private key to be changed
- May cause problems with countermeasures to fault attacks

Applying TVLA to Elliptic Curve-based Algorithms

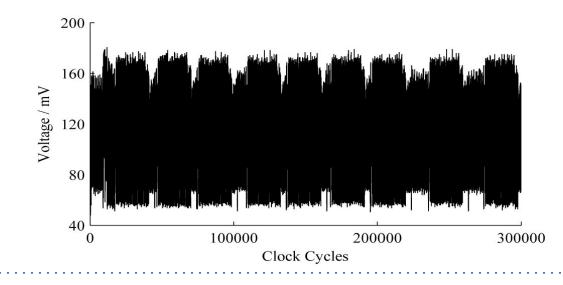
- Theoretical analysis
 - Are there any operations that take a variable amount of time?
 - E.g. modular inversion
 - What information do we have on the group exponentiation algorithm used?
- Timing Analysis
 - As described previously on any identified operations
- •Simple Power Analysis
 - Can any information be derived from inspecting traces
 - Optional, but potentially saves time

Applying TVLA to Elliptic Curve-based Algorithms

- Leakage Detection
 - As for RSA, private keys can be tested by comparing the side channel during the treatment of a fixed key compared to a random key.
 - Targeted operations different for ECDH and ECDSA
 - Inputs to compare are algorithm dependent
 - ECDH we choose a point and use it in the same way that we use a chosen state for RSA to generate a public key
 - ECDSA we choose a state for the combination of the *x*-coordinate output in the signature with the hashed message to be signed

Applying TVLA to Elliptic Curve-based Algorithms

- Collision analysis
 - Operations are not all the same, i.e., additions and doubling operations
 - Compress subtraces by extracting field multiplications from subtraces



Applying TVLA to Elliptic Curve-based Algorithms

- Collision analysis
 - Comparing doubling operations or additions in consecutive rounds is straightforward
 - Comparing a doubling operation with an addition we need to compare each field multiplication in one operation with each field multiplication in the other
 - A matrix of small difference traces to generate difference traces for testing
 - Otherwise, the procedure is the same as the general case

Conclusion

- TVLA can be applied to public-key cryptographic algorithms
- More complex because of the number of implementation choices

- Theoretical analysis can have a large effect on subsequent tests
 - Difficult to define a standard battery of tests that will account for all cases