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Korea Cryptographic Module Validation Program 

- Validating security and implementation conformance of a CM for the protection of     

  sensitive information in governmental/public institutions 

- CAVP is conducted in KCMVP process 

- Since 2005 

• Security Requirements : KS X ISO/IEC 19790:2015 

• Test Requirements : KS X ISO/IEC 24759:2015 

• Approved Algorithms : ISO/IEC, KS, TTA 
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Current validation statistics in KCMVP 

z 160 modules are validated 
– SW modules: 157, HW modules: 3 

• Library: 100(User library >> Kernel library, C > Java > C++)  
• Crypto Applications: 57 

z Operational environments 
– Windows > Linux/Unix > Java > Mobile(android, iOS) 
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LEA: A 128-bit Block Cipher for Fast Encryption on Common Processors, WISA 2013, LNCS 8267, 2014. 
HIGHT: A New Block Cipher Suitable for Low-Resource Device, CHES 2006, LNCS 4249, 2006. 
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CAVP 
with KCAVS Conformance test 

CM Specification 

Finite State Model 

Roles, Services and Authentication 

CM Ports and Interfaces 

Operational Environment 

Key Management 

Self Tests 

Design Assurance 

Mitigation of Other Attacks 

Document review 

Source code analysis 

Func&Operational test 

Consistency btw FSM and execution of CM 

- Conducting Entropy analysis 
- Checking key life management generation, store,  
   input/output, zeroisation, etc 
- Checking underlying DRBGs 

Testing CM on every operational environments 

Conducting Source code security analysis 

Conducting negative & positive selftests 

- Checking consistency btw documents and code 
- Checking unidentified information flows 
- Checking underlying cryptographic algorithms 

Checking development environments 

- Understanding overall structure of CM 
- Checking approved mode & algorithms & CSP 

Supports concurrent users or not? 
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CAVP in KCMVP 

z CAVP test tool 
– KCAVS 4.1(revised at 2016) 

 
z Most frequently used approved algorithms in KCMVP 

– Symmetric-key > Hash > MAC > RBG >  
Public key encryption > Digital signature > KE 

 
z CAVP duration 

– Depends on types of algorithms  
• KE > Public key algorithms > RBG > MAC/Hash > Symmetric 

– Depends on vendor’s knowledge on crypto and development 
– Need to develop CAVP test applications 
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CAVP in KCMVP 

z Vendor’s difficulties in CAVP 
– Effort to develop CAVP test applications Æ get better with sample codes 
– Lack of understanding CAVP process Æ get better with education 

• DRBG test for RBG 
• MCT test for symmetric key 
• Public key algorithms (encryption, digital signature, KE), etc 

– Format error Æ get handled with file I/O utilities 
– Algorithmic defects Æ easily find faults with log comparison 

• Key/parameter generation in public key algorithms, CMAC/CCM, DRBG, etc 

z Our plan to develop methods for speeding CAVP up 
– Providing CAVP sample codes and utilities for easy file I/O 

• Consider Endian, word size, operational environments, language 
• Consider algorithmic characteristics and CM’s interfaces 
• Logging functions for tracking the algorithmic failure 
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Difficulties in Entropy Assessment 

z It is infeasible to achieve perfect randomness in ideal coin-toss 

(unpredictable, unbiased, independent) 

z It is required to prove (or show the evidence of) sufficient closeness to ideal 

randomness 

z It is hard to develop criteria for lower bound of entropy estimations 

Particularly for software modules, 

z We have to justify whether the module collects sufficient entropy from the 

operating environment (not within the module) 

z Most noise sources used in a software module are non-physical sources 

provided by OS 
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Referenced documents 

z (SP 800-22) Statistical Randomness Tests 

– Suitable for evaluating final output of RNGs 

– Not applicable to digitized entropy sources (without post-processing/conditioning) 

z (BSI AIS.31) Test for TRNGs 

– Evaluation criteria for TRNG(Physical RNG)s 

– Suitable for detecting physical failures (easy to pass) 

z (SP 800-90B) Test for entropy sources (draft) 

– Conservative entropy assessment for noise sources 

 

Î Hard to adopt them to assess entropy in software modules 
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RNG in a software module 

z Software module and its operating environment 
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Entropy sources in SW module 

z Collecting entropy from the operating environment 

z Not completely determined when the module is tested in KCMVP Lab. 

The problems are… 

z KCMVP has to finish the entropy assessment without knowing that the exact 

operating environment (only knowing the OS) 

z It is hard to collect sufficient data for entropy estimation 

Examples of entropy sources 

z System functions such as GetCurrentThreadID(), GetCurrentProcessID(), and 

GetCursorPos()  

z Output of RNG in OS: /dev/random, CryptGenRandom(), etc. 
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Estimation of entropy rate 

z When collecting entropy from the physical noise source,  

we assume that each sample is harvested independently  

z Then entropy rate (entropy per bit) can be regarded as constant 

Î If we estimate the amount of entropy in a single sample conservatively), 

total entropy is expected to increase linearly 

Î Entropy estimations in 800-90B focus on the lower bound of entropy per 

sample  

z However, samples are dependent (particularly in SW noise) 

z Total entropy is not proportional to the number of samples 

(observed by the experiments) 
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Entropy estimation for multiple samples 

z Motivation 

– CMVP requires to collect hundreds of bit of entropy for DRBG 

– How many times do we have to collect samples iteratively for sufficient entropy? 

– It is desirable to estimate the lower bound of entropy for multiple samples collected by 

repeated harvests 

 

z Observation 

– Experimental results show that 

entropy does not increase linearly 

 

Î How can we find a lower bound? 
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Min-entropy of random variables 

z Notations 

– Min-entropy of a random variable 𝑿 : 𝑯∞(𝑿) 

– Min-entropy of 𝑿, 𝒀  for the joint distribution :  𝑯∞(𝑿, 𝒀) 

– Product distribution 𝑿 × 𝒀  : 𝐏𝑿×𝒀 𝑿, 𝒀 = 𝑷 𝑿 𝑷(𝒀) 

 

z When we collect entropy from a single source repeatedly, 

– Sequence of samplings : 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 

– Joint distribution (𝑿𝟏, 𝑿𝟐) : distribution for double size sampling 

– Upper bound : 𝑯∞ 𝑿𝟏, 𝑿𝟐 ≤ 𝑯∞ 𝑿𝟏 + 𝑯∞ 𝑿𝟐 = 𝟐𝑯∞ 𝑿𝟏  

 

Î Can we have a lower bound for 𝑯∞ 𝑿𝟏, 𝑿𝟐  ? 
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Lower bound Theorem for min-entropy 

z THEOREM for Lower bound 

Let 𝑿𝟏 and 𝑿𝟐 be random variables for the repeated sampling model whose 

relative independence 𝑹𝑰 𝑿𝟏, 𝐗𝟐  is bounded by 𝝐 (𝑹𝑰 𝑿𝟏, 𝐗𝟐 ≤ 𝝐). Then 

𝑯∞ 𝑿𝟏, 𝑿𝟐 ≥ 𝑯∞ 𝑿𝟏 + 𝑯∞ 𝑿𝟐 − 𝝐 ln 𝒆  . 
 

z Remark 

– Relative independence 𝑹𝑰 𝑿, 𝒀  is the rate of dependency defined as the smallest 𝝐 > 𝟎 s.t.  

𝑷𝑿×𝒀 𝑿, 𝒀  𝒆𝒙𝒑 −𝝐 ≤ 𝑷 𝑿,𝒀 𝑿, 𝒀 ≤ 𝑷𝑿×𝒀 𝑿, 𝒀  𝒆𝒙𝒑 𝝐  

– THEOREM says that if samples are collected repeatedly, the min-entropy of two adjacent 

samples has a lower bound determined by their relative independence 

– Applying THEOREM repeatedly, we have a lower bound for multiple samples 
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Example : min-entropy estimation 

z Example: IID source 

– HW RNG: Quantum RNG (Quantis-USB by IDQ) 

– Sample size:  1 bit 

– 800-90B estimations for various sample sizes 

increase almost linearly 

– The lower bounds given by THEOREM 

seem to be very conservative 
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Example : min-entropy estimation 

z Example: non-IID source 

– Entropy source: GPU (NVIDIA GTX780) 

– Rationale: Race conditions on shared memory 

– Sample size:  1 bit 

– 800-90B estimations (green curve) does not 

increase linearly (showing dependency) 

– The lower bounds given by THEOREM 

seem to be tight 
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Summary of entropy estimation 

z In KCMVP, 

– Require minimum 112-bit entropy on raw noise data 

– Most of approved cryptographic modules are software modules 

– Entropy sources lies outside of the modules, mostly provided by OSes 

– It is recommended to collect entropy as many sources as possible 

 

z Several approaches for estimating entropy for software modules 

– Lower bound estimations are important to ensure that the module collect sufficient entropy 

for DRBG 

– Because of the limitations of data size, we develop variants of existing statistical tests  

– Mutual information between consecutive samples are considered to estimate entropy 
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Future in KCMVP? 
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