‘. ® . &

The Current Status and Entropy Estimation

= | Methodology in KCMVP I
in ICMC16

2016.5.18

National Security Research Institute Kookmin University
SeogChung Seo, SangWoon Jang Yongjin Yeom

| M cvcie
| Kemvp? :

Korea Cryptographic Module Validation Program

- Validating security and implementation conformance of a CM for the protection of
tive inf g oublic instituti

- CAVP is conducted in KCMVP process

- Since 2005

S

« Security Requirements : KS X ISO/IEC 19790:2015
 Test Requirements : KS X ISO/IEC 24759:2015
» Approved Algorithms : ISO/IEC, KS, TTA

—_——————

ICMC16

| kemvp?

Supporting and cooperating
w.r.t. CM validation and supporting
policies/techniques vendors technically

Validation ~ Testing ~
Accuthority Authority

Testing Vendors' CMs

l, « Establishing governmental policies « Testing CMs according to \
1 for validation CMs KS standards :
: « Approving testing results - Supporting vendors technically by 1 z::’P'Y'“Q
1 consulting, education, etc : ‘ 2
1 : S
I . Developing and standardizing - Developing and standardizing |
l\ testing methodologies testing methodologies 7 —r1
o e o o o e o o o o o o o o o o ooo
Standardizi [T
tandari 1Zing ooo UUU
testing methodologies mifT]
O
*CM: Crytographic Module National and international Governmental and

standard organizations public institutions

| ICMIC16

| History of KCMVP

(] [] ®
2005 ¢ 2007 ® 2008 ? 2009 ? 2011 ¢ 2012 % 2013 ¢ 2015
Security strength: Security strength Applying KCMVP
80-bit Revision : S 112-bit security
: : : : 112-bit 2 inKCMVP : :

Software Crypto KS X
™ : : IsKoS/I)éc : : Crypto t | algorithms | | 1sO/EC
validation 197902008, | - : module . validation :| 19790:2015

standard . | 527592008 . : validation : standard : : .
Vl.O_CM . : : standard : V2.0 M =| 24759:2015
testing . : . . V1.0 . ! Implementation [:
standard : : : guide
V1.0 : : : : :] (2013.1) |
Crypto é) é : :
algorithm ¢ L ¢ ®
validation
standard
V1.0

| s e (cicte
! Current validation statistics in KCMVP !

® 160 modules are validated

—SW modules: 157, HW modules: 3
e Library: 100(User library >> Kernel library, C > Java > C++)

e Crypto Applications: 57
® Operational environments
—Windows > Linux/Unix > Java > Mobile(android, iOS)

180
99 IM/‘_IW
140 e
120 T
80 //71 =—SW modules
60
,4 =#—HW modules
40 /
20
TN —
N) Q N %) ™ \e)
Q Q > \% \% Jy N4 >
o P P P W W P P

H
O
d

| o W cvicte
! Approved Algorithms in KCMVP !

. Types I Agorithms
Block cipher ARIA-128/1 QSZE/ESD&I_I'_I%AI:::_ZS/'I 92/256,
Hash function SHA-224/256/384/512
Hash-based HMAC(SHA-224/256/384/512)
. Block cipher-based GCM(GMAC), CCM, CMAC
Hash_DRBG SHA-224/256/384/512
RBG HMAC_DRBG HMAC(SHA-224/256/384/512)
CTR_DRBG ARIA-128/192/256, LEA-128/192/256, SEED, HIGHT
Key establishment DH, ECDH
Public key encryption RSAES
Digital signature RSA-PSS, KCDSA, ECDSA, EC-KCDSA

LEA: A 128-bit Block Cipher for Fast Encryption on Common Processors, WISA 2013, LNCS 8267, 2014.
HIGHT: A New Block Cipher Suitable for Low-Resource Device, CHES 2006, LNCS 4249, 2006.

H KCMVP Test Process

Document review

_ Design Assurance
I Source code analysis

Wi(t:h‘ol‘(\!/g,s |:> Conformance test

l CM Specification ——o

ll Finite State Model ——o

ll Roles, Services and Authentication e———

l CM Ports and Interfaces ~——o

l Operational Environment —e

ll Key Management B °

ll Self Tests —

—o

—o

I Func&Operational test l Mitigation of Other Attacks

H ICMC16

- Understanding overall structure of CM
- Checking approved mode & algorithms & CSP

Consistency btw FSM and execution of CM

Supports concurrent users or not?

- Checking consistency btw documents and code
- Checking unidentified information flows
- Checking underlying cryptographic algorithms

Testing CM on every operational environments

- Conducting Entropy analysis

- Checking key life management generation, store,
input/output, zeroisation, etc

- Checking underlying DRBGs

Conducting negative & positive selftests

Checking development environments

Conducting Source code security analysis

~

7

| I—— [T
| CAVP in KCMVP :

® CAVP test tool
—KCAVS 4.1(revised at 2016)

® Most frequently used approved algorithms in KCMVP

—Symmetric-key > Hash > MAC > RBG >
Public key encryption > Digital signature > KE

® CAVP duration

—Depends on types of algorithms
e KE > Public key algorithms > RBG > MAC/Hash > Symmetric

—Depends on vendor’s knowledge on crypto and development
—Need to develop CAVP test applications

| S

e

(P —— [T
| CAVP in KCMVP :

® Vendor’s difficulties in CAVP
— Effort to develop CAVP test applications - get better with sample codes

— Lack of understanding CAVP process - get better with education
e DRBG test for RBG
e MCT test for symmetric key
e Public key algorithms (encryption, digital signature, KE), etc
— Format error 2 get handled with file I/0 utilities
— Algorithmic defects - easily find faults with log comparison
e Key/parameter generation in public key algorithms, CMAC/CCM, DRBG, etc

® Our plan to develop methods for speeding CAVP up

—Providing CAVP sample codes and utilities for easy file I/O
e Consider Endian, word size, operational environments, language
e Consider algorithmic characteristics and CM’s interfaces
e Logging functions for tracking the algorithmic failure

'ﬁ_ o ICMC16
! Difficulties in Entropy Assessment !

® It is infeasible to achieve perfect randomness in ideal coin-toss

(unpredictable, unbiased, independent)

® Itis required to prove (or show the evidence of) sufficient closeness to ideal

randomness
® It is hard to develop criteria for lower bound of entropy estimations
Particularly for software modules,

® We have to justify whether the module collects sufficient entropy from the

operating environment (not within the module)

® Most noise sources used in a software module are non-physical sources

provided by OS

W vas
! Referenced documents !

® (SP 800-22) Statistical Randomness Tests
— Suitable for evaluating final output of RNGs

— Not applicable to digitized entropy sources (without post-processing/conditioning)

e (BSI AlS.31) Test for TRNGs
— Evaluation criteria for TRNG(Physical RNG)s

— Suitable for detecting physical failures (easy to pass)

e (SP 800-90B) Test for entropy sources (draft)

— Conservative entropy assessment for noise sources

=» Hard to adopt them to assess entropy in software modules

——

ICVIC16
! RNG in a software module !

e Software module and its operating environment

VI VI
Secondary
>| Entropy > /dev/random =
Pool
entropy Primary
sources Entropy
IRQ Pool
urandom
DISK > Entropy » /dev/urandom
Pool
T r

Cryptographic
\ Module

/ Nondeterministic part Deterministic part
(generating seed) I (standard DRBG)

< »
< »

<

Entropy Source Distillation

+ Rahdbm Numbers from 0 ———>
User Input —>]

+ Haldyare Noise —
@onal Input ——>

RNG

P
o —> Pseudo random odtput

/

~
Z

'ﬁ, ICMC16
! Entropy sources in SW module !

® Collecting entropy from the operating environment
® Not completely determined when the module is tested in KCMVP Lab.
The problems are...

e KCMVP has to finish the entropy assessment without knowing that the exact

operating environment (only knowing the OS)
® It is hard to collect sufficient data for entropy estimation
Examples of entropy sources

® System functions such as GetCurrentThreadID(), GetCurrentProcessID(), and

GetCursorPos()

e Output of RNG in OS: /dev/random, CryptGenRandom(), etc.

————

'ﬁ, | ICMC16
! Estimation of entropy rate !

® When collecting entropy from the physical noise source,

we assume that each sample is harvested independently
® Then entropy rate (entropy per bit) can be regarded as constant

= If we estimate the amount of entropy in a single sample conservatively),

total entropy is expected to increase linearly

= Entropy estimations in 800-90B focus on the lower bound of entropy per

sample
® However, samples are dependent (particularly in SW noise)

® Total entropy is not proportional to the number of samples

(observed by the experiments)

e (ovicte
! Entropy estimation for multiple samples !

e Motivation
— CMVP requires to collect hundreds of bit of entropy for DRBG
— How many times do we have to collect samples iteratively for sufficient entropy?

— It is desirable to estimate the lower bound of entropy for multiple samples collected by

repeated harvests

entropy of multiple samples

8
. 7
® Observation ;
— Experimental results show that 2 °
= 4
entropy does not increase linearly 5 5
2
1
0
=» How can we find a lower bound? 1 2 3 4 s 6 7 8

samples

————

e W cvicie
! Min-entropy of random variables !

® Notations
— Min-entropy of a random variable X : H,(X)
— Min-entropy of (X, Y) for the joint distribution: H.,(X,Y)

— Product distribution X X Y : Py..y(X,Y) = P(X)P(Y)

® When we collect entropy from a single source repeatedly,
— Sequence of samplings : X4, X5, ..., X,
— Joint distribution (X, X5) : distribution for double size sampling

— Upper bound : H,,(X{,X;) < H,(X7) + H,(Xy) = 2H(X;)

=» Can we have a lower bound for H (X1, X5) ?

—

e " cvic16
! Lower bound Theorem for min-entropy !

e THEOREM for Lower bound
Let X; and X, be random variables for the repeated sampling model whose
relative independence RI(X4,X,) is bounded by € (RI(X4,X,) < €). Then
H,(X{,X;,)>H,(X;)+H,(X;)—€lne .

® Remark

— Relative independence RI(X,Y) is the rate of dependency defined as the smallest € > 0 s.t.
Px.y(X,Y) exp(—€) < Pxy)(X,Y) < Py, y(X,Y) exp(e)

— THEOREM says that if samples are collected repeatedly, the min-entropy of two adjacent

samples has a lower bound determined by their relative independence

— Applying THEOREM repeatedly, we have a lower bound for multiple samples

——

W cvicie
| Example : min-entropy estimation !

e Example: IID source

— HW RNG: Quantum RNG (Quantis-USB by IDQ)

— Sample size: 1 bit .

upper bound for ideal case

— 800-90B estimations for various sample sizes

—— min-entropy per sample size e

approximate lower bound

increase almost linearly

— The lower bounds given by THEOREM

. >
seem to be very conservative =
s -0
PRl |)
4
2
1
1 2 4 8 16

sample size(bit)

W cvicie
| Example : min-entropy estimation !

e Example: non-IID source

— Entropy source: GPU (NVIDIA GTX780)

16
— Rationale: Race conditions on shared memory

upper bound for ideal case

—— min-entropy per sample size

— Sample size: 1 bit

approximate lower bound

— 800-90B estimations (green curve) does not

increase linearly (showing dependency)

entropy

— The lower bounds given by THEOREM

seem to be tight

1 2 4 8 16
sample size(bit)

| ¥ cvcie
| summary of entropy estimation H

® In KCMVP,

— Require minimum 112-bit entropy on raw noise data
— Most of approved cryptographic modules are software modules
— Entropy sources lies outside of the modules, mostly provided by OSes

— It is recommended to collect entropy as many sources as possible

® Several approaches for estimating entropy for software modules

— Lower bound estimations are important to ensure that the module collect sufficient entropy

for DRBG
— Because of the limitations of data size, we develop variants of existing statistical tests

— Mutual information between consecutive samples are considered to estimate entropy

———— 20

ICMC16

Future in KCMVP? |

of
techimigues

New icr @V Vallckton

L

Cryptographic device
[Bom cmmort coed and eaadar)

o

e ;
AR T\ LR :
A ‘F\\‘;\J\:~ \\‘.}-\" \‘\ \

'ﬁlcmms
la&A |

Q&A

