
The Current Status and Entropy Estimation
Methodology in KCMVP

in ICMC16

2016.5.18

Kookmin University
Yongjin Yeom

National Security Research Institute
SeogChung Seo, SangWoon Jang

ICMC16
KCMVP?

2

Korea Cryptographic Module Validation Program

- Validating security and implementation conformance of a CM for the protection of

 sensitive information in governmental/public institutions

- CAVP is conducted in KCMVP process

- Since 2005

• Security Requirements : KS X ISO/IEC 19790:2015

• Test Requirements : KS X ISO/IEC 24759:2015

• Approved Algorithms : ISO/IEC, KS, TTA

ICMC16
KCMVP?

3

ICMC16

CM
Implementation

guide
(2013. 1)

History of KCMVP

2005 2007 2008 2009

CM
validation
standard
V1.0 CM
testing

standard
V1.0

Crypto
algorithm
validation
standard

V1.0

Security strength:

80-bit

2011

Security strength

Revision :

112-bit

Crypto
algorithms
validation
standard

V2.0

Software
Crypto
module

validation
standard

V1.0

2012

Applying KCMVP

112-bit security

in KCMVP

2013

KS X
ISO/IEC

19790:2008,
24759:2008

2015

4

KS X
ISO/IEC

19790:2015
,

24759:2015

ICMC16
Current validation statistics in KCMVP

z 160 modules are validated
– SW modules: 157, HW modules: 3

• Library: 100(User library >> Kernel library, C > Java > C++)
• Crypto Applications: 57

z Operational environments
– Windows > Linux/Unix > Java > Mobile(android, iOS)

5

10

48

71

97

116
132

145
157

1 1 1 1 3 3 3 3 0

20

40

60

80

100

120

140

160

180

SW modules

HW modules

ICMC16
Approved Algorithms in KCMVP

6

LEA: A 128-bit Block Cipher for Fast Encryption on Common Processors, WISA 2013, LNCS 8267, 2014.
HIGHT: A New Block Cipher Suitable for Low-Resource Device, CHES 2006, LNCS 4249, 2006.

ICMC16
KCMVP Test Process

7

CAVP
with KCAVS Conformance test

CM Specification

Finite State Model

Roles, Services and Authentication

CM Ports and Interfaces

Operational Environment

Key Management

Self Tests

Design Assurance

Mitigation of Other Attacks

Document review

Source code analysis

Func&Operational test

Consistency btw FSM and execution of CM

- Conducting Entropy analysis
- Checking key life management generation, store,
 input/output, zeroisation, etc
- Checking underlying DRBGs

Testing CM on every operational environments

Conducting Source code security analysis

Conducting negative & positive selftests

- Checking consistency btw documents and code
- Checking unidentified information flows
- Checking underlying cryptographic algorithms

Checking development environments

- Understanding overall structure of CM
- Checking approved mode & algorithms & CSP

Supports concurrent users or not?

ICMC16
CAVP in KCMVP

z CAVP test tool
– KCAVS 4.1(revised at 2016)

z Most frequently used approved algorithms in KCMVP

– Symmetric-key > Hash > MAC > RBG >
Public key encryption > Digital signature > KE

z CAVP duration

– Depends on types of algorithms
• KE > Public key algorithms > RBG > MAC/Hash > Symmetric

– Depends on vendor’s knowledge on crypto and development
– Need to develop CAVP test applications

8

ICMC16
CAVP in KCMVP

z Vendor’s difficulties in CAVP
– Effort to develop CAVP test applications Æ get better with sample codes
– Lack of understanding CAVP process Æ get better with education

• DRBG test for RBG
• MCT test for symmetric key
• Public key algorithms (encryption, digital signature, KE), etc

– Format error Æ get handled with file I/O utilities
– Algorithmic defects Æ easily find faults with log comparison

• Key/parameter generation in public key algorithms, CMAC/CCM, DRBG, etc

z Our plan to develop methods for speeding CAVP up
– Providing CAVP sample codes and utilities for easy file I/O

• Consider Endian, word size, operational environments, language
• Consider algorithmic characteristics and CM’s interfaces
• Logging functions for tracking the algorithmic failure

9

ICMC16
Difficulties in Entropy Assessment

z It is infeasible to achieve perfect randomness in ideal coin-toss

(unpredictable, unbiased, independent)

z It is required to prove (or show the evidence of) sufficient closeness to ideal

randomness

z It is hard to develop criteria for lower bound of entropy estimations

Particularly for software modules,

z We have to justify whether the module collects sufficient entropy from the

operating environment (not within the module)

z Most noise sources used in a software module are non-physical sources

provided by OS

10

ICMC16
Referenced documents

z (SP 800-22) Statistical Randomness Tests

– Suitable for evaluating final output of RNGs

– Not applicable to digitized entropy sources (without post-processing/conditioning)

z (BSI AIS.31) Test for TRNGs

– Evaluation criteria for TRNG(Physical RNG)s

– Suitable for detecting physical failures (easy to pass)

z (SP 800-90B) Test for entropy sources (draft)

– Conservative entropy assessment for noise sources

Î Hard to adopt them to assess entropy in software modules

11

ICMC16
RNG in a software module

z Software module and its operating environment

12

User Input

Hardware Noise

Entropy Source

Seed
Pseudo random output Post

processing

Nondeterministic part
(generating seed)

Deterministic part
(standard DRBG)

Distillation

RNG
Algorithm

output

Random Numbers from OS

Additional Input

Cryptographic
Module

entropy
sources

Primary
Entropy

Pool

Secondary
Entropy

Pool

urandom
Entropy

Pool

mouse

KBD

IRQ

DISK

/dev/random

/dev/urandom

ICMC16
Entropy sources in SW module

z Collecting entropy from the operating environment

z Not completely determined when the module is tested in KCMVP Lab.

The problems are…

z KCMVP has to finish the entropy assessment without knowing that the exact

operating environment (only knowing the OS)

z It is hard to collect sufficient data for entropy estimation

Examples of entropy sources

z System functions such as GetCurrentThreadID(), GetCurrentProcessID(), and

GetCursorPos()

z Output of RNG in OS: /dev/random, CryptGenRandom(), etc.

13

ICMC16
Estimation of entropy rate

z When collecting entropy from the physical noise source,

we assume that each sample is harvested independently

z Then entropy rate (entropy per bit) can be regarded as constant

Î If we estimate the amount of entropy in a single sample conservatively),

total entropy is expected to increase linearly

Î Entropy estimations in 800-90B focus on the lower bound of entropy per

sample

z However, samples are dependent (particularly in SW noise)

z Total entropy is not proportional to the number of samples

(observed by the experiments)

14

ICMC16
Entropy estimation for multiple samples

z Motivation

– CMVP requires to collect hundreds of bit of entropy for DRBG

– How many times do we have to collect samples iteratively for sufficient entropy?

– It is desirable to estimate the lower bound of entropy for multiple samples collected by

repeated harvests

z Observation

– Experimental results show that

entropy does not increase linearly

Î How can we find a lower bound?

15

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

en
tr
o
p
y

samples

entropy of multiple samples

ICMC16
Min-entropy of random variables

z Notations

– Min-entropy of a random variable 𝑿 : 𝑯∞(𝑿)

– Min-entropy of 𝑿, 𝒀 for the joint distribution : 𝑯∞(𝑿, 𝒀)

– Product distribution 𝑿 × 𝒀 : 𝐏𝑿×𝒀 𝑿, 𝒀 = 𝑷 𝑿 𝑷(𝒀)

z When we collect entropy from a single source repeatedly,

– Sequence of samplings : 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏

– Joint distribution (𝑿𝟏, 𝑿𝟐) : distribution for double size sampling

– Upper bound : 𝑯∞ 𝑿𝟏, 𝑿𝟐 ≤ 𝑯∞ 𝑿𝟏 + 𝑯∞ 𝑿𝟐 = 𝟐𝑯∞ 𝑿𝟏

Î Can we have a lower bound for 𝑯∞ 𝑿𝟏, 𝑿𝟐 ?

16

ICMC16
Lower bound Theorem for min-entropy

z THEOREM for Lower bound

Let 𝑿𝟏 and 𝑿𝟐 be random variables for the repeated sampling model whose

relative independence 𝑹𝑰 𝑿𝟏, 𝐗𝟐 is bounded by 𝝐 (𝑹𝑰 𝑿𝟏, 𝐗𝟐 ≤ 𝝐). Then

𝑯∞ 𝑿𝟏, 𝑿𝟐 ≥ 𝑯∞ 𝑿𝟏 + 𝑯∞ 𝑿𝟐 − 𝝐 ln 𝒆 .

z Remark

– Relative independence 𝑹𝑰 𝑿, 𝒀 is the rate of dependency defined as the smallest 𝝐 > 𝟎 s.t.

𝑷𝑿×𝒀 𝑿, 𝒀 𝒆𝒙𝒑 −𝝐 ≤ 𝑷 𝑿,𝒀 𝑿, 𝒀 ≤ 𝑷𝑿×𝒀 𝑿, 𝒀 𝒆𝒙𝒑 𝝐

– THEOREM says that if samples are collected repeatedly, the min-entropy of two adjacent

samples has a lower bound determined by their relative independence

– Applying THEOREM repeatedly, we have a lower bound for multiple samples

17

ICMC16
Example : min-entropy estimation

z Example: IID source

– HW RNG: Quantum RNG (Quantis-USB by IDQ)

– Sample size: 1 bit

– 800-90B estimations for various sample sizes

increase almost linearly

– The lower bounds given by THEOREM

seem to be very conservative

18

ICMC16
Example : min-entropy estimation

z Example: non-IID source

– Entropy source: GPU (NVIDIA GTX780)

– Rationale: Race conditions on shared memory

– Sample size: 1 bit

– 800-90B estimations (green curve) does not

increase linearly (showing dependency)

– The lower bounds given by THEOREM

seem to be tight

19

ICMC16
Summary of entropy estimation

z In KCMVP,

– Require minimum 112-bit entropy on raw noise data

– Most of approved cryptographic modules are software modules

– Entropy sources lies outside of the modules, mostly provided by OSes

– It is recommended to collect entropy as many sources as possible

z Several approaches for estimating entropy for software modules

– Lower bound estimations are important to ensure that the module collect sufficient entropy

for DRBG

– Because of the limitations of data size, we develop variants of existing statistical tests

– Mutual information between consecutive samples are considered to estimate entropy

20

ICMC16
Future in KCMVP?

21

ICMC16
Q & A

22

Q&A

